Advertisement

Ozone and the Forests in Austria and Switzerland

  • R. Matyssek
  • W. M. Havranek
  • G. Wieser
  • J. L. Innes
Chapter
Part of the Ecological Studies book series (ECOLSTUD, volume 127)

Abstract

Following reports during the early 1980s in Germany about a spreading extensive dieback of forests (e.g., Prinz et al. 1982) occurring throughout central Europe, Waldsterben was believed to be a danger to the forests of Austria and Switzerland (see Schwarzenbach 1991; Amt der Tiroler Landesregierung 1985–1995). As this scenario did not materialize, the concept of “Neuartige Waldschäden” was introduced (FBW 1989), whereby forest status was classified by crown transparency (leaf loss) and foliage yellowing. From the outset, attention focused on ozone (03) as the causal agent rather than on acidic deposition (Arndt et al. 1982; Prinz 1984), especially because many soils in alpine regions possess a high buffering capacity (Bucher 1982). Moreover, high impacts of SO2 appeared to have been short-lived and were not sufficiently widespread to account for the supposed forest decline. It also appeared relevant to consider ozone as a constraint on forests in mountainous areas, since ozone increases in concentration with altitude, due to both anthropogenic activities and natural causes (Krupa and Manning 1988). In Austria, especially in Tyrol, the 03 hypothesis was supported by the crown transparency of trees, which increased in parallel with the 03 concentration from 1984 through 1987 (Amt der Tiroler Landesregierung 1985–1995: Fig. 4.1).

Keywords

Picea Abies Carbon Allocation Forest Decline Larix Decidua Crown Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alscher RG, Amundson RG, Cumming JR, Fellows S, Fincher J, Rubin G, van Leuken P, Weinstein LH (1989) Seasonal changes in pigments, carbohydrates and growth of red spruce as affected by ozone. New Phytol 113:211–223Google Scholar
  2. Ammer U, Burgis M, Koch B, Martin K (1988) Untersuchungen über den Zusammenhang zwischen Schädigungsgrad und Meereshöhe im Rahmen des Schwerpunktprogramms zur Erforschung der Wechselwirkungen von Klima und Waldschäden. Forstwiss Centralbl (Hamb) 107:145–151Google Scholar
  3. Amt der Tiroler Landesregierung (1985–1995) Untersuchungen über den Waldzustand und die Immissionsbelastung. Berichte an den Tiroler Landtag 1985–1995, InnsbruckGoogle Scholar
  4. Anfossi D, Sandroni S, Viarengo S (1991) Tropospheric ozone in the nineteenth century: the Montcalieri series. J Geophys Res 96D:17349–17352Google Scholar
  5. Arndt U, Seufert G (1990) Introduction to the Hohenheim long-term experiment. Environ Pollut 68:195–204PubMedGoogle Scholar
  6. Arndt U, Seufert G, Nobel W (1982) Die Beteiligung von Ozon an der Komplexkrankheit der Tanne (Abies alba Mill.) - eine prüfenswerte Hypothese. Staub - Reinhalt Luft 42:243–247Google Scholar
  7. Becker K, Saurer M, Egger A, Fuhrer J (1989) Sensitivity of white clover to ambient ozone in Switzerland. New Phytol 112:235–243Google Scholar
  8. Benecke U, Schulze ED, Matyssek R, Havranek WM (1981) Environmental control of CO2uptake and leaf conductance in Larix decidua Mill. I. A comparison of contrasting natural environments. Oecologia 50:54–61Google Scholar
  9. Bermadinger-Stabentheiner E (1994) Untersuchungen zum antioxidativen Schutzsystem von Fichten an den “Höhenprofilen Achenkirch”. In: Herman F, Smidt S (eds) Ökosystemare Studien im Kalkalpin. Höhenprofile Achenkirch. Ergebnisse aus dem Bereich Phyllosphäre. FBVA Ber 78:73–82Google Scholar
  10. Bermadinger-Stabentheiner E, Grill D (1992) Pflanzenphysiologische Untersuchungen am Höhenprofil Zillertal. Forstliche Bundesversuchsanstalt Wien. FBVA-Ber 67:87–93Google Scholar
  11. Blanchard RO, Baas J, van Cotter H (1979) Oxidant damage to eastern white pine in NewHampshire. Plant Dis Rep 63:177–182Google Scholar
  12. Bolsinger M, Flückiger W (1989) Ambient air pollution induced changes in amino acid pattern of phloem sap in host plants - relevance to aphid infestation. Environ Pollut 56:209–216PubMedGoogle Scholar
  13. Boyer JS (1985) Water transport. Annu Rev Plant Physiol 36:473–516Google Scholar
  14. Bucher JB (1982) Physiologische Veränderungen und ökotoxikologische Wirkmechanismen. Probleme der Differentialdiagnose. In: Waldschäden durch Immissionen? Vorträge der Informationstagung. Gottlieb Duttweiler-Institut (GDI) Rüschlikon/Zürich, pp 91–109Google Scholar
  15. Bucher JB (1994) Die Ozonbelastung als Risikofaktor für den Wald. In: Innes JL, Böhm JP, Bucher JB, Dobbertin M, Jansen E, Kull P, Rigling A, Walthert L, Zimmermann S (eds) Sanasilva-Bericht 1993. Der Zustand des Schweizer Waldes. Berichte 334 der Eidgenössischen Forschungsanstalt für Wald, Schnee und Landschaft, Birmensdorf, pp 48–49Google Scholar
  16. Bucher JB, Landoll W, Bleuler P (1986) Ozonmessungen auf dem Rötliboden ob Göschenen UR. Schweiz Z Forstwes 137:607–621Google Scholar
  17. BUWAL/NABEL (1995) Luftbelastung 1994. Schriftenreihe Umwelt Nr 24, Bundesamt für Umwelt, Wald und Landschaft, BernGoogle Scholar
  18. Chappelka AH, Chevone BI (1992) Tree response to ozone. In: Lefohn AS (ed) Surface level ozone exposures and their effects on vegetation. Lewis, Chelsea, pp 271–324Google Scholar
  19. Darrall NM (1989) The effect of air pollutants on physiological processes in plants. Plant Cell Environ 12:1–30Google Scholar
  20. Davis DD, Skelly JM (1992) Foliar sensitivity of eight eastern hardwood tree seedlings exposed to ozone, acidic precipitation, and sulfur dioxide. J Air Waste Manage Assoc 42:309–311Google Scholar
  21. Davis DD, Wilhour R (1976) Susceptibility of woody plants to sulphur dioxide and photochemical oxidants. A literature review. EPA 600/3–76–102, Environ Res Lab CorvallisGoogle Scholar
  22. Dobson MC, Taylor G, Freer-Smith PH (1990) The control of ozone uptake by Picea abies (L.) Karst and P. sitchensis (Bong.) Carr. during drought and interacting effects on shoot water relations. New Phytol 116:465–474Google Scholar
  23. Edwards PI, Wood F, Kochenderfner JN (1991) Characterisation of ozone during consecutive drought and wet years at a rural West Virginia site. J Air Waste Manage Assoc 41:1450–1453Google Scholar
  24. EPA (US Environmental Protection Agency) (1978) Diagnosing vegetation injury caused by air pollution. Applied Science Assoc, Corvallis, OregonGoogle Scholar
  25. Esterbauer H, Grill D, Welt R (1980) The annual rhythm of the ascorbic acid system in needles of Picea abies. Z Pflanzenphysiol 98:393–402Google Scholar
  26. Farquhar GD, Sharkey TD (1982) Stomatal conductance and photosynthesis. Annu Rev Plant Physiol 33:317–345Google Scholar
  27. Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40:503–537Google Scholar
  28. FBW (Forschungsbeirat Waldschäden/Luftverunreinigungen) (1989) Dritter Bericht, Kernforschungszentrum Karlsruhe, Karlsruhe, ISSN 0931–7905Google Scholar
  29. Fincher J, Alscher RG (1992) The effect of long-term ozone exposure on injury of seedlings of red spruce (Picea rubens Sarg.) New Phytol 120:49–59Google Scholar
  30. Flückiger W, Braun S (1990) Waldschadensbericht, Untersuchungen in Buchenbeobachtungsflächen 1984–1988. Institut für Angewandte Pflanzenbiologie, Schönenbuch, 57 ppGoogle Scholar
  31. Flückiger W, Braun S (1994) Waldschaden-Bericht, Untersuchungen in Buchenbeobachtungsflächen 1984–1993. Institut für Angewandte Pflanzenbiologie, Schönenbuch, 54 ppGoogle Scholar
  32. Flückiger W, Braun S (1995) Revitalization of an alpine protective forest by fertilization. Plant Soil 168–169:481–488Google Scholar
  33. Freer-Smith PH, Dobson M, Taylor G (1989) Factors controlling the rates of 03 uptake by spruce and beech. In: Bucher JB, Bucher-Wallin I (eds) Air pollution and forest decline. Proc 14th Int Meet for specialists in air pollution effects on forest ecosystems, IUFRO P2.05, Interlaken, 2–8 October 1988. EAFV Birmensdorf, pp 407–409Google Scholar
  34. Fuchs M, Schulze E-D, Fuchs MI (1977) Spatial distribution of photosynthetic capacity and performance in a mountain spruce forest of northern Germany. II. Climatic control of carbon dioxide uptake. Oecologia 29:329–340Google Scholar
  35. Gehrig R, Jeannet P, Wunderli S (1991) Höhenabhängigkeit von Schadstoffimmissionen. In: Schüpbach E (ed) Meteorologic and Luftchemie in Waldbeständen - Lufthaushalt, Luftrerschmutzung and Waldschäden in der Schweiz, Vol 4. Verlag der Fachvereine Zürich/Switzerland, pp 71–101Google Scholar
  36. Greitner CS, Winner WE (1988) Increases in ä13C values of radish and soybean plants caused by ozone. New Phytol 108:489–494Google Scholar
  37. Grill D, Pfeifhofer H, Esterbauer H (1987) Further investigations on the thiol content of Norway spruce needles. Phyton 27:311–317Google Scholar
  38. Grill D, Pfeifhofer H, Tschulik A, Hellig K, Holzer K (1988) Thiol content of spruce needles at forest limits. Oecologia 76:294–297Google Scholar
  39. Grill D, Tausz M, Bermadinger-Stabentheiner E, Edl M, Gailhofer M, Halbwachs G, Havranek WM, Kromp-Kolb H, Müller M, Nemetz C, Puchinger L, Ruppert W, Scardelli U, Strohl A, Wagner K, Wieser G, Wimmer R, Zellnig G (1994) Physiological and biochemical bioindication and its application to the FIW II Project `Schöneben’. Forstl Schriftenreihe Univ Bodenkultur Wien 7:123–145Google Scholar
  40. Grünhage L, Jäger HL (1994) Influence of the atmospheric conductivity on the ozone exposure of plants under ambient conditions: considerations for establishing ozone standards to protect vegetation. Environ Pollut 85:125–129PubMedGoogle Scholar
  41. Günthardt-Goerg MS (1991) Die Einwirkung von Luftschadstoffen und Klimafaktoren auf die Wachsschicht von Fichtennadeln. In: Stark (ed) Luftschadstoffe und Wald-Lufthaushalt, Luftverschmutzung und Waldschäden in der Schweiz, vol 5. Verlag der Fachvereine Zürich pp 107–118Google Scholar
  42. Günthardt-Goerg MS, Matyssek R, Keller T (1993) Birke (Betula pendula): Mögliche Akklimatisierung an Ozon-Streß. Forstwiss Centralbl 112:46–49Google Scholar
  43. Günthardt-Goerg MS, Keller T, Matyssek R, Scheidegger C (1994) Structural and chemical variation in the wax of Norway spruce needles, from mature trees at two forest sites and from young plants experimentally exposed to 03 or 502. Eur J Plant Pathol 24:92–111Google Scholar
  44. Häsler R (1991a) Vergleich der Gaswechselmessungen der drei Jahre (Juli 1986 - Juni 1989). In: Stark (ed) Luftschadstoffe und Wald-Lufthaushalt, Luftverschmutzung und Waldschäden in der Schweiz, vol 5. Verlag der Fachvereine Zürich, pp 177–184Google Scholar
  45. Häsler R (1991b) Einfluß der Gaswechselmeßkammer auf Luftschadstoffe am Beispiel von Ozon. In: Stark M (ed) Luftschadstoffe und Wald-Lufthaushalt, Luftverschmutzung und Waldschäden in der Schweiz, vol 5. Verlag der Fachvereine Zürich, pp 261–265Google Scholar
  46. Häsler R, Herzog K (1991) Wasserhaushalt der Fichte. In: Stark (ed) Luftschadstoffe und Wald-Lufthaushalt, Luftverschmutzung und Waldschäden in der Schweiz, vol 5. Verlag der Fachvereine Zürich, pp 97–103Google Scholar
  47. Häsler R Ruckstuhl A (1991) Modellierung der Photosynthese der Fichte unter dem Einfluß natürlicher Parameter. In: Stark (ed) Luftschadstoffe und Wald-Lufthaushalt, Luftverschmutzung und Waldschäden in der Schweiz, vol 5. Verlag der Fachvereine Zürich, pp 169–175Google Scholar
  48. Häsler R, Savi C, Herzog K (1991) Photosynthese und stomatäre Leitfähigkeit der Fichte unter dem Einfluß von Witterung und Luftschadstoffen. In: Stark (ed) Luftschadstoffe und Wald-Lufthaushalt, Luftverschmutzung und Waldschäden in der Schweiz, vol 5. Verlag der Fachvereine Zürich, pp 143–168Google Scholar
  49. Havranek WM, Wieser G (1990) Research design to measure ozone uptake and its effects on gas-exchange of spruce in the field. In: Payer HD, Pfirrmann T, Mathy P (eds) Environmental research with plants in closed chambers. Air pollution research report 26. Commission of the European Communities, Brussels, pp 148–152Google Scholar
  50. Havranek WM, Wieser G (1993) Zur Ozontoleranz der Lärche (Larix decidua Mill.). Forstwiss Centralbl 112:56–64Google Scholar
  51. Havranek WM, Wieser G (1994) Design and testing of twig chambers for ozone fumigation and gas exchange measurements in mature trees. Proc R Soc Edinb Sect B 102:541–546Google Scholar
  52. Havranek WM, Wieser G, Bodner M (1989) Ozone fumigation of Norway spruce at tim-berline. Ann Sci For 46 Suppl: 581s-585sGoogle Scholar
  53. Havranek WM, Pfeifhofer H, Grill D (1990) Pigmentgehalte und Gaswechsel von Tief-und Hochlagenfichten nach chronischer Ozonbelastung. Forstwiss Centralbl 109:200–209Google Scholar
  54. Hoigné J (1988) Bildung und Chemische Bedeutung von Photooxidantien in der wässerigen Phase. In: Schulte-Hostede S (ed) Proc Int Symp Garmisch-Partenkirchen 1988. GSF-Ber München 17:166–175Google Scholar
  55. Innes IL (1993) Air pollution and forests - an overview. In Schlaepfer R (ed) Long-term implications of climate change and air pollution on forest ecosystems. Progress report of the IUFRO task force `Forest, Climate Change and Air Pollution’. IUFRO World Series, vol 4, Vienna, pp 77–100Google Scholar
  56. Innes JL, Böhm JP, Bucher JB, Dobbertin M, Jansen E, Kull P, Rigling A, Walthert L, Zimmermann S (1994) SanasilvaBericht 1993. Der Zustand des Schweizer Waldes. Berichte 334 der Eidgenössischen Forschungsanstalt für Wald. Schnee und Landschaft, BirmensdorfGoogle Scholar
  57. Jandl R, Katzensteiner K (1992) Düngungsversuche mit Magnesitdüngern zu Fichte im Magnesiummangelgebiet Schöneben. In: Glatzel G, Jandl R, Sieghardt M, Hager H (eds) Magnesiummangel in mitteleuropäischen Waldökosystemen, vol 5. Forstl Schriftenreihe Univ Bodenkultur Wien pp 152–170Google Scholar
  58. Joos K (1991) Jahrringanalysen auf den Beobachtungsflächen Davos, Alptal und Lägeren. In: Stark (ed) Luftschadstoffe und Wald-Lufthaushalt, Luftverschmutzung und Waldschäden in der Schweiz, vol 5. Verlag der Fachvereine Zürich, pp 45–52Google Scholar
  59. Kaiser A (1994) Projekt “Höhenprofil Zillertal”. Analyse der vertikalen Temperatur-und Windstruktur und ihr Einfluß auf die Immissionskonzentrationen. FBVA Ber 77, Forstliche Bundesversuchsanstalt, WienGoogle Scholar
  60. Kandler O (1985) Immissions-versus Epidemie-Hypothesen. In: von Kortzfleisch G (ed) Waldschäden, Oldenbourg München, pp 19–59Google Scholar
  61. Keller T, Häsler R (1984) The influence of a fall fumigation with ozone on the stomatal behaviour of spruce and fir. Oecologia 64:284–286Google Scholar
  62. Krause GHM, Prinz B (1985) Zur Wirkung von Ozon und saurem Nebel (einzeln und in Kombination) auf phänomenologische und physiologische Parameter an Nadel-und Laubgehölzen im kombinierten Begasungsexperiment. Spez Ber der Kernforschungsanlage Jülich 369:208–221Google Scholar
  63. Krause GHM, Prinz B, Jung KD (1983) Forest effects in West Germany. In: Davis DD, Miller AA, Dochinger L (eds) Air pollution and the productivity of the forest. Izak Walton League of America, Washington, DC, pp 297–332Google Scholar
  64. Krause GHM, Arndt U, Brandt CJ, Bucher J, Kenk G, Matzner E (1986) Forest decline in Europe: development and possible causes. Water Air Soil Pollut 31:647–668Google Scholar
  65. Krehan H (1991) Forstpathologische Sondererhebungen im Rahmen der österreichischen Waldzustandsinventur 1984–1988. Mitt Forstl Bundesversuchsanst Wien 166:133–161Google Scholar
  66. Krehan H (1992) Ergebnisse forstpathologischer Untersuchungen. Forstliche Bundesver-suchsanstalt, FBVA-Berichte 71:85–92Google Scholar
  67. Kristöfel F, Neumann M (1993) Ergebnisse der terrestrischen Kronenerhebungen 1993. Osterr Forstz 103 (12):10–12Google Scholar
  68. Kristöfel F, Neumann M, Pollanschütz J (1989) Ergebnisse der Kronenzustandserhebungen 1989 - Es war schon schlechter. Osterr Forstz 11/1988:51–53Google Scholar
  69. Kronfuß G (1996) Einfluß von Ozon und mildem Trockenstreß auf Gaswechsel, Antioxidantien und Schutzenzyme bei Fichte (Picea abies L. Karst.). Dipl Thesis, Universität InnsbruckGoogle Scholar
  70. Kronfuß G, Wieser G, Havranek WM, Polle A (1996) Ozone and drought effects on quaiacol peroxidase and lipid peroxidation. J Plant Physiol 148:203–206Google Scholar
  71. Krupa SV, Manning WI (1988) Atmospheric ozone: formation and effects on vegetation. Environ Pollut 50:101–137PubMedGoogle Scholar
  72. Kuusela K (1994) Forest resources in Europe. Cambridge University Press, Cambridge, 168 ppGoogle Scholar
  73. Landoll W (1992) Methoden und Probleme der experimentellen Ursachenforschung. In: Schlaepfer R (ed) Forum für Wissen 1992, Waldschadenforschung in der Schweiz: Stand der Kenntnisse. Eidg Forschungsanstalt für Wald. Schnee u Landschaft (WSL), Birmensdorf, pp 73–79Google Scholar
  74. Landolt W, Lüthy-Krause B (1991) Wirkungen umweltrelevanter Ozon-Konzentrationen auf verschiedene Pflanzen. In: Stark (ed) Luftschadstoffe und Wald - Lufthaushalt, Luftverschmutzung und Waldschäden in der Schweiz, vol 5. Verlag der Fachvereine Zürich, pp 127–134Google Scholar
  75. Landolt W, Pfenninger I, Lüthy-Krause B (1989) The effect of ozone and season on the pool sizes of cyclitols in Scots pine (Pinus sylvestris) Trees 3:85–88Google Scholar
  76. Landolt W, Günthardt-Goerg MS, Pfenninger I, Scheidegger C (1994) Ozone-induced microscopical changes and quantitative carbohydrate contents of hybrid poplar (Populus x euramericana). Trees 8:183–190Google Scholar
  77. Lang KJ, Holdenrieder O (1985) Nekrotische Flecken an Nadeln von Picea abies - Ein Symptom des Fichtensterbens? Eur J For Pathol 15:52–58Google Scholar
  78. Lange OL, Heber U, Schulze E-D, Ziegler H (1989a) Atmospheric pollutants and plant metabolism. In: Schulze ED, Lange OL, Oren S (eds) Forest decline and air pollution. A study of spruce (Picea abies) on acidic soils. Ecological studies, vol 77. Springer, Berlin Heidelberg New York, pp 238–273Google Scholar
  79. Lange OL, Weikert RM, Wedler M, Gebel J, Heber U (1989b) Photosynthese und Nährstoffversorgung von Fichten aus einem Waldschadensgebiet auf basenarmem Untergrund. Allg Forstztg 3:55–64Google Scholar
  80. Leitner J (1991) Immissionskundliche Untersuchungen integrierende Luftschadstoffmessungen. In: Österreichisches Waldschaden-Beobachtungssystem. Ziele, Methoden und erste Ergebnisse. FBVA Berichte 49:77–87Google Scholar
  81. Low PS, Davies TD, Kelly PM, Reiter R (1991) Uncertainties in the surface ozone trend at Hohenpeißenberg. Atmos Environ 25A:511–515Google Scholar
  82. Luethy-Krause B, Pfenninger I, Landolt W (1990) Effects of ozone on organic acids in needles of Norway spruce and Scots pine. Trees 4:198–204Google Scholar
  83. Mahoney MJ, Chevone BI, Skelly JM, Moore LD (1985) Influence of mycorrhizae on the growth of loblolly pine Pinus taeda seedlings exposed to ozone and sulphur dioxide. Phytopathology 75:679–682Google Scholar
  84. Maier-Maercker U (1989) Delignification of subsidiary and guard cell walls of Picea abies (L.) Karst. by fumigation with ozone. Trees 3:57–64Google Scholar
  85. Maier-Maercker U, Koch W (1991) Experiments on the control capacity of stomata of Picea abies (L.) Karst. after fumigation with ozone and in environmentally damaged material. Plant Cell Environ 14:175–184Google Scholar
  86. Manning WJ, Krupa SV (1992) Experimental methodology for studying the effects of ozone on crops and trees. In: Lefohn AS (ed) Surface level ozone exposures and their effects on vegetation. Lewis, Chelsea, pp 93–156Google Scholar
  87. Matyssek R (1985) Der Kohlenstoff-, Wasser-, und Nährstoffhaushalt der wechselgrünen und immergrünen Koniferen Lärche, Fichte, Kiefer. PhD Thesis, University Bayreuth, 224 ppGoogle Scholar
  88. Matyssek R (1986) Carbon, water and nitrogen relations in evergreen and deciduous conifers. Tree Physiol 2:177–187PubMedGoogle Scholar
  89. Matyssek R, Schulze E-D (1987) Heterosis in hybrid larch (Larix decidua x leptolepis) II. Growth characteristics. Trees 1:225–231Google Scholar
  90. Matyssek R, Günthardt-Goerg MS, Keller T, Scheidegger C (199la) Impairment of the gas exchange and structure in birch leaves (Betula pendula) caused by low ozone concentrations. Trees 5:5–13Google Scholar
  91. Matyssek R, Maruyama S, Boyer JS (1991b) Growth-induced water potentials may mobilize internal water for growth. Plant Cell Environ 14:917–923Google Scholar
  92. Matyssek R, Günthardt-Goerg MS, Saurer M, Keller T (1992) Seasons growth, 513C in leaves and stem, and phloem structure of birch (Betula pendula) under low ozone concentrations. Trees 6:69–76Google Scholar
  93. Matyssek R, Keller T, Koike T (1993a) Branch growth and leaf gas exchange of Populus tremula exposed to low ozone concentrations throughout two growing seasons. Environ Pollut 79:1–7Google Scholar
  94. Matyssek R, Günthardt-Goerg MS, Landolt W, Keller T (1993b) Whole-plant growth and leaf formation in ozonated hybrid poplar (Populus x euramericana). Environ Pollut 81:207–212Google Scholar
  95. Matyssek R, Günthardt-Goerg MS, Maurer S, Keller T (1995a) Night time exposure to ozone reduces whole-plant production in Betula pendula. Tree Physiol 15:159–165Google Scholar
  96. Matyssek R, Reich PB, Oren R, Winner WE (1995b) Response mechanisms of conifers to air pollutants (review article). In: Smith WK, Hinckley TM (eds) Physiological ecology of coniferous forests. Physiological Ecology Series, Academic Press, New York, pp 255–308Google Scholar
  97. McLaughlin SB, McConathy RK, Duvick D, Mann LK (1982) Effects of chronic air pollution stress on photosynthesis, carbon allocation and growth of white pine trees. For Sci 28:60–70Google Scholar
  98. Miller PR (1973) Oxidant-induced community change in a mixed conifer forest. In: Naegele JA (ed) Air pollution damage to vegetation. Advances in chemistry series No 122. American Chemical Society, Washington, DC, pp 101–117Google Scholar
  99. Miller PR (1984) Ozone effects in the San Bernardino National Forest. In: Davis DD, Miller AA, Dochinges L (eds) Symp on air pollution and the productivity of the forest. Izaak Walton League of America, Arlington, pp 161–197Google Scholar
  100. Mooi J (1980) Influence of ozone on growth of two poplar cultivars. Plant Dis 64:772–773 Mooi J (1981) Influence of ozone and sulphur dioxide on defoliation and growth of poplars. Mitt Foretl Bundes-Versuchsanst Wien 137:47–51Google Scholar
  101. Mooney HA, Winner WE (1991) Partitioning response of plants to stress. In: Mooney HA, Winner WE, Pell EJ (eds) Response of plants to multiple stresses. Academic Press, San Diego, pp 129–141Google Scholar
  102. Mößmer R, Tränkner H, Maier G, Burgis M, Grad M, Marin K (1990) Schwerpunktprogramm Erforschung der Wechselwirkungen von Klima-und Waldschäden am Schwerpunktstandort Kalkalpen. In: Waldschadenserhebung 1989 - Luftbildauswertung - terrestrische Schadansprache. Bayerische Forstliche Versuchs-und Forschungsanstalt, MünchenGoogle Scholar
  103. Neumann M (1990) Zu Fragen des Einflusses von Standorts-und Bestandesfaktoren auf den Kronenzustand. In: Neumann M, Schadauer K (eds) Waldzustandsinventur. Methodische Überlegungen und Detailauswertungen. FBVA Berichte 45:53–83Google Scholar
  104. Neumann M, Schadauer K (1995) Die Entwicklung des Zuwachses in Österreich an Hand von Bohrkernanalysen. Allg Forst Jagdz 166:230–235Google Scholar
  105. Nicolussi K, Bortenschlager S, Körner C (1995) Increase in tree-ring width in subalpine Pinus cembra from the central Alps that may be CO2-related. Trees 9:181–189 Paffrath D, Peters W (1988) Betrachtung der Ozon-Vertikalverteilung im Zusammenhang mit den neuartigen Waldschäden. Forstwiss Centralbl 107:151–159Google Scholar
  106. Paffrath D, Peters W, Stangl H (1986) Airborne measurements of ozone and other pollutants north and south of the Alps. Proc 7th Clean Air Congr, Sydney, vol 3, pp 194203Google Scholar
  107. Pearson M, Mansfield TA (1993) Interacting effects of ozone and water stress on the stomatal resistance of beech (Fagus sylvatica L.) New Phytol 123:351–358Google Scholar
  108. Pell EJ, Dann MS (1991) Multiple stress-induced foliar senescence and implications for whole-plant longevity. In: Mooney HA, Winner WE, Pell EJ (eds) Response of plants to multiple stresses. Academic Press, San Diego, pp 189–204Google Scholar
  109. Pell EJ, Eckhardt N, Enyedi AJ (1992) Timing of ozone stress and resulting status of ribulose bisphosphate carboxylase/oxigenase and associated net photosynthesis. New Phytol 120:397–405Google Scholar
  110. Pisek A, Tranquillini W (1954) Assimilation und Kohlenstoffhaushalt in der Krone von Fichten- (Picea excelsa Link.) und Rotbuchenbäumen (Fagus silvatica L.). Flora 141:237–270Google Scholar
  111. Polle A (1995) Protection from oxidative stress in trees as affected by elevated CO2 and environmental stress. In: Mooney HA, Koch GW (eds) Terrestrial ecosystem response to elevated CO2. Physiological Ecology Series, Academic Press, New York, pp 299–315Google Scholar
  112. Polle A, Rennenberg H (1992) Field studies on Norway spruce trees at high altitudes: II. Defense systems against oxidative stress in needles. New Phytol 121:635–642Google Scholar
  113. Polle A, Wieser G, Havranek WM (1995) Quantification of ozone influx and apoplastic ascorbate content in needles of Norway spruce trees (Picea abies L., Karst.) at high altitude. Plant Cell Environ 18:681–688Google Scholar
  114. Prinz B (1984) Woran sterben unsere Wälder? Umschau 18:544–549Google Scholar
  115. Prinz B, Krause GHM, Stratmann H (1982) Waldschäden in der Bundesrepublik Deutschland. LIS-Bericht 28, Essen, 154 ppGoogle Scholar
  116. Puxbaum H, Gabler K, Smidt S, Glattes F (1991) A one-year record of ozone profiles in an alpine valley (Zillertal, Tyrol, Austria, 600–2000 m a.s.1.). Atmos Environ 25A:17591765Google Scholar
  117. Pye JM (1988) Impact of ozone on the growth and yield of trees: a review. J Environ Qual 17:347–360Google Scholar
  118. Reich PB (1983) Effects of low concentrations of 03 on net photosynthesis, dark respiration, and chlorophyll contents in aging hybrid poplar leaves. Plant Physiol 73:291296Google Scholar
  119. Reich PB (1987) Quantifying plant response to ozone: a unifying theory. Tree Physiol 3:63–91PubMedGoogle Scholar
  120. Reich PB, Amundson RG (1987) Ambient levels of ozone reduce net photosynthesis in tree and crop species. Science 230:566–570Google Scholar
  121. Rennenberg H (1988) Wirkung von Photooxidantien auf Pflanzen. In: Schulte-Hostede S, Kirchner M, Reuter M (eds) Int Symp Verteilung und Wirkung von Photooxidantien im Alpenraum. GSF Bericht 17/88, pp 360–370Google Scholar
  122. Roberts BR, Cannon WN Jr (1992) Growth and water relationship of red spruce seedlings exposed to atmospheric deposition and drought. Can J For Res 22:193–197Google Scholar
  123. Saurer M, Fuhrer J, Siegenthaler U (1991) Influence of ozone on the stable carbon isotope composition, 8’3C of leaves and grain of spring wheat (Triticum aestivum L.). Plant Physiol 97:313–316PubMedGoogle Scholar
  124. Saurer M, Siegenthaler U, Schweingruber F (1995a) The climate-carbon isotope re-lationship in tree rings and the significance of site conditions. Tellus 47B:320–330Google Scholar
  125. Saurer M, Maurer S, Matyssek R, Landolt W, Günthardt-Goerg MS, Siegenthaler U (1995b) The influence of ozone and nutrition on 813C in Betula pendula. Oecologia 103:397–406Google Scholar
  126. Schier GA, McQuattie CJ, Jensen KF (1990) Effects of ozone and aluminium on pitch pine (Pinus rigida) seedlings growth and nutrient relations. Can J For Res 20:1714–1719Google Scholar
  127. Schneider J, Loibl W, Spangl W (1996) Kumulative Ozonbelastung der Vegetation in Österreich. Berechnung und Darstellung nach dem Konzept der kritischen Belastungsgrenzen (`Critical Levels’). Reports UBA-96–127, Bundesministerium für Umwelt, Wien, 74 ppGoogle Scholar
  128. Schulze E-D Köppers M, Matyssek R (1986) The notes of carbon balance and branching pattern in the growth of woody species. In: Girnish TJ (ed) On the economy of plant form and function. Cambridge University Press, Cambridge, pp 585–602Google Scholar
  129. Schupp R, Rennenberg H (1988) Diurnal changes in the glutathione content of spruce needles (Picea abies L.). Plant Sci 57:113–117Google Scholar
  130. Schwarzenbach FH (1991) Vorgeschichte und Planung des Nationalen Forschungsprogrammes NFP14+ `Waldschäden und Luftverschmutzung in der Schweiz’. In: Stark M (ed) Luftschadstoffe und Wald. Verlag der Fachvereine Zürich, pp 1–11Google Scholar
  131. Showman RE (1991) A comparison of ozone injury to vegetation during moist and drought years. J Air Waste Manage Assoc 41:63–64Google Scholar
  132. Sieber TN (1991) Bedeutung von Pilzen in epigäischen Pflanzenteilen für die Fichtenschäden. In: Stark (ed) Luftschadstoffe und Wald-Lufthaushalt, Luftverschmutzung und Waldschäden in der Schweiz, vol 5. Verlag der Fachvereine Zürich, pp 119–126Google Scholar
  133. Simini M, Skelly JM, Davis DD, Savage JE, Comrie AC (1992) Sensitivity of four hardwood species to ambient ozone in northcentral Pennsylvania. Can J For Res 22:1789–1799Google Scholar
  134. Skelly JM, Davis DD, Merill W, Cameron EA, Brown HD, Drummond DB, Dochinger LS (1987) Diagnosing injury to eastern forest trees. US Dep Agric, For Serv, For Pest Manage and Pennsylvania State UniversityGoogle Scholar
  135. Smidt S (1993) Die Ozonsituation in alpinen Tälern Österreichs. Centralbl Gesamte Forstwes 110:205–220Google Scholar
  136. Smidt S, Gabler K (1994) Development of SO2, Nox, and ozone annual mean values in Austria. Centralbl gesamte Forstwes 111:183–176Google Scholar
  137. Smith WH (1984) Auswirkungen von regionalen Luftschadstoffen auf die Wälder in den USA. Forstwiss Centralbl (Hamb) 103:48–61Google Scholar
  138. Spangl W (1995) Ozone in Austria, Overview. In: Exceedances of critical loads and levels - background papers. Int worksh spatial and temporal assessment of air pollutant impact on ecosystems, Nov 22–24, 1995, ViennaGoogle Scholar
  139. Spence DR, Rykiel EJ, Sharpe PJH Jr (1990) Ozone alters carbon allocation in loblolly pine assessment with carbon-11 labelling. Environ Pollut 64:93–106PubMedGoogle Scholar
  140. Stemberger A (1991) Über Ausmaß und Verteilung der Mortalität: Gegenüberstellung von Ergebnissen der Waldzustandsinventur mit früheren Untersuchungen. In: Zusammenfassende Darstellung der Waldzustandsinventur. Mitt Forstl Bundesversuchsanst Wien 166:163–173Google Scholar
  141. Tausz M, Grill D (1995) Physiological reactions of spruce trees to environmental stresses - field study results from various locations in Austria. Proc Int Workshop: Exceedances of critical loads and levels, spatial and temporal interpretation for elements in landscapes sensitive to atmospheric pollutants (Background papers) Nov 22–24, 1995, ViennaGoogle Scholar
  142. Tausz M, Müller M, Bermadinger-Stabentheiner E, Grill D (1994) Stress-physiological investigations and chromosomal analysis on Norway spruce (Picea abies L., Karst.) - a field study. Phyton 34:291–308Google Scholar
  143. Temple PJ, Riechers GH, Miller PR, Lennox RW (1992) Growth response of ponderosa pine to long-term exposure to ozone, wet and dry acidic deposition, and drought. Can J For Res 23:59–66Google Scholar
  144. Tingey DT, Taylor GE Jr (1982) Variation in plant response to ozone: a conceptual model of physiological events. In: Unsworth HM, Ormond DD (eds) Effects of gaseous air pollution in agriculture and horticulture. Butterworth, London, pp 113–138Google Scholar
  145. Tjoelker MG, Volin JC, Oleksyn J, Reich PB (1993) Light environment alters response to ozone stress in seedlings of Acer saccharum Marsh. and hybrid Populus L. I. In situ net CO2 exchange and growth. New Phytol 124:627–636Google Scholar
  146. Tremmel DC, Bazzaz FA (1995) Plant architecture and allocation in different neighborhoods - implications for competitive success. Ecology 76:262–271Google Scholar
  147. UN/ECE-CEC (1992) Forest condition in Europe. Convention on long-range trans-boundary air pollution. International cooperative programme on assessment and monitoring of air pollution effects on forests. CEC-UN/ECE Brussels, 117 ppGoogle Scholar
  148. UN/ECE (1994) Critical level for ozone. In: Fuhrer J, Achermann B (eds) UNECE Workshop Report, Bern 1993 Schriftenreihe FAC 16, 328 ppGoogle Scholar
  149. VDI (1989) Maximale Immissions-Konzentrationen für Ozon. VDI Handbuch Reinhaltung der Luft. Beuth, Berlin, Blatt 6Google Scholar
  150. Wallin G, Skärby L (1992) The influence of ozone on the stomatal and non-stomatal limitation of photosynthesis in Norway spruce (Picea abies (l.) Karst.) exposed to soil moisture deficits. Trees 6:128–136Google Scholar
  151. Wallin G, Ottosson S, Sellden G (1992) Long-term exposure of Norway spruce, Picea abies (L.) Karst, to ozone in open top chambers. IV. Effects on the stomatal and nonstomatal limitation of photosynthesis and on carboxylation efficiency. New Phytol 121:395–401Google Scholar
  152. Webster R, Rigling A, Walthert L (1996) An analysis of tree crown conditions in relation to enviornment in Switzerland. Forestry (in press)Google Scholar
  153. Weikert RM, Wedler M, Lippert M, Schramel P, Lange OL (1989) Photosynthetic performance, chloroplast pigments, and mineral content of various needle age classes of spruce (Picea abies) with and without the new flush: an experimental approach for analysing forest decline phenomena. Trees 3:161–172Google Scholar
  154. Werner H (1988) Erfahrungen mit passiven Ozonintegratoren im Freiland-und im Kammertest. Symp Verteilung und Wirkung von Photooxidantien im Alpenraum April 11–15, 1988 in Garmisch Partenkirchen. GSF Bericht 17/88, pp 346–359Google Scholar
  155. Wieser G, Havranek WM (1993a) Ozone uptake in the sun and shade crown of spruce: quantifying the physiological effects of ozone exposure. Trees 7:227–232Google Scholar
  156. Wieser G, Havranek WM (1993b) Einfluß der Nährstoffversorgung auf den Gaswechsel der Fichte. Centralbl Gesamte Forstwes 110:135–149Google Scholar
  157. Wieser G, Havranek WM (1994) Exposure of mature Norway spruce to ozone in twig-chambers: effects on gas exchange. Proc R Soc Edinb Sect B 102:119–125Google Scholar
  158. Wieser G, Havranek WM (1995) Environmental control of ozone uptake in Larix decidua Mill.: a comparison between different altitudes. Tree Physiol 15:128–136Google Scholar
  159. Wieser G, Havranek WM, Polle A (1996) Effects of ambient and above-ambient ozone concentrations on mature conifers in the field. In: Kärenlampi L, Skärby L (eds) Critical levels for ozone in Europe: Testing and finalizing the concepts. UN-ECE Workshop Report, Kuopio University, Finland, pp 183–190Google Scholar
  160. Wieser G, Weih M, Havranek WM (1991) Ozone fumigation in the sun crown of Norway spruce. In: Reuter M, Kirchner M, Kirchinger E, Reiter H, Rösel K, Pfeifer U (eds) Waldschadensforschung im östlichen Mittereuropa und in Bayern. Proc Expertentagung Schloß Neuburg/Inn bei Passau Nov 13–15 1990. GSF-Bericht 24/91, pp 567–573Google Scholar
  161. Wieser H (1995) Auswirkungen chronischer Ozonbelastung auf die Gaswechselphysiologie junger Hoch-und Tieflagenherkünfte der Lärche (Larix decidua L.) in Klimakammern. Dipl Thesis, Universität InnsbruckGoogle Scholar
  162. Wiskich JT, Dry IB (1985) The tricarboxylic acid cycle in plant mitochondria: its operation and regulation. In: Douce R Day DA (eds) Higher plant cell respiration. Encyclopaedia of plant physiology, new series, vol 18. Springer Berlin Heidelberg New York, pp 281–313Google Scholar
  163. Wolfenden J, Mansfield TA (1991) Physiological disturbances in plants caused by air pollutants. Proc R Soc Edinb 97B:117–138Google Scholar
  164. Zimmermann R, Oren R, Schulze ED, Werk KS (1988) Performance of Picea abies (L.) Karst. at different stages of decline II Photosynthesis and leaf conductance. Oecologia 76:518–523Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • R. Matyssek
  • W. M. Havranek
  • G. Wieser
  • J. L. Innes

There are no affiliations available

Personalised recommendations