Opioids pp 3-26 | Cite as

Opioid Receptor Multiplicity: Isolation, Purification, and Chemical Characterization of Binding Sites

  • E. J. Simon
  • T. L. Gioannini
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 104 / 1)


This chapter will deal primarily with what researchers have been able to learn about the properties of opioid receptors, or more precisely, of opioid binding sites, by isolating and purifying them. In order to do this with clarity it is necessary to present first some introductory comments about the different types of opioid receptors currently known, or at least postulated, and about their properties based on studies other than chemical isolation and separation.


Opioid Receptor Opiate Receptor Selective Ligand Kappa Receptor Opioid Binding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahmed MS, Zhon D-H, Cavinato AG, Maulik D (1989) Opioid binding properties of the purified kappa receptor from human placenta. Life Sci 44: 861–871PubMedCrossRefGoogle Scholar
  2. Archer S, Michael J, Osei-Gyimah P, Seyed-Mozaffari A, Zukin S, Maneckjee R, Simon EJ, Gioannini TL (1985) Hybromet: a ligand for purifying opioid receptors. J Med Chem 28: 1950–1953PubMedCrossRefGoogle Scholar
  3. Attali B, Gouarderes C, Mazarguil H, Audigier Y, Cros J (1982) Evidence for multiple “kappa” binding sites by use of opioid peptides in the guinea pig lumbo-sacral spinal cord. Neuropeptides 3: 53–64PubMedCrossRefGoogle Scholar
  4. Bidlack JM, Abood LG (1980) Solubilization of the opiate receptor. Life Sci 27: 331–340PubMedCrossRefGoogle Scholar
  5. Bidlack JM, Abood LG, Osei-Gyimah P, Archer S (1981) Purification of the opiate receptor from rat brain. Proc Natl Acad Sci USA 78: 636–639PubMedCrossRefGoogle Scholar
  6. Broccardo M, Erspamer V, Falconieri-Erspamer G, Improta G, Linari G, Melchiorri P, Montecucchi PC (1981) Pharmacological data on dermorphins, a new class of potent opioid peptides from amphibian skin. Br J Pharmacol 73: 625–631PubMedGoogle Scholar
  7. Chang K-J, Killian S, Hazum E, Cuatrecasas P, Chang J-K (1981) Morphiceptin: a potent and specific agonist for morphine (mu) receptors. Science 212: 75–77PubMedCrossRefGoogle Scholar
  8. Chang K-J, Wei ET, Killian A, Chang J-K (1983) Potent morphiceptin analogs: structure activity relationships and morphine-like activities. J Pharmacol Exp Ther 227: 403–408PubMedGoogle Scholar
  9. Chang K-J, Blanchard SG, Cuatrecasas P (1984) Benzomorphan sites are ligand recognition sites of putative epsilon receptors. Mol Pharmacol 26: 484–488PubMedGoogle Scholar
  10. Cho TM, Yamato C, Cho JS, Loh HH (1981) Solubilization of membrane-bound opiate receptors from rat brain. Life Sci 28: 2651–2657PubMedCrossRefGoogle Scholar
  11. Cho TM, Ge BL, Yamato C, Smith AP, Loh HH (1983) Isolation of opiate binding components by affinity chromatography and reconstitution of binding affinities. Proc Natl Acad Sci USA 80: 5176–5180PubMedCrossRefGoogle Scholar
  12. Cho TM, Ge B-L, Loh HH (1985) Isolation and purification of morphine receptor by affinity chromatography. Life Sci 36: 1075–1085PubMedCrossRefGoogle Scholar
  13. Cho TM, Hasegawa J-T, Ge BL, Loh HH (1986) Purification to apparent homogeneity of a mu-type opioid receptor from rat brain. Proc Natl Acad Sci USA 83: 4138–4142PubMedCrossRefGoogle Scholar
  14. Chow T, Zukin RS (1983) Solubilization and preliminary characterization of mu and kappa opiate receptor subtypes from rat brain. Mol Pharmacol 24: 203–212PubMedGoogle Scholar
  15. Clark CR, Birchmore B, Sharif NA, Hunter JC, Hill RG, Hughes J (1988) PD117302: a selective agonist at the kappa opioid receptor. Br J Pharmacol 9: 618–626Google Scholar
  16. Cotton R, Giles MG, Miller L, Shaw JS, Timms D (1984) ICI 174864: a highly selective antagonist for the opioid delta receptor. Eur J Pharmacol 97: 331–332PubMedCrossRefGoogle Scholar
  17. Crema G, Gioannini TL, Hiller JM, Simon EJ (1986) The direct demonstration of binding of mu, delta and kappa agonists to digitonin-solubilized opioid receptors from bovine striatum. NIDA Res Monogr 75: 9–12PubMedGoogle Scholar
  18. De Vries TJ, Hogenboom F, Mulder AH, Schoffelmeer ANM (1990) Ontogeny of mu-, delta- and kappa-opioid receptors mediating inhibition of neurotransmitter release and adenylate cyclase activity in rat brain. Brain Res Dev Brain Res 54: 63–69PubMedGoogle Scholar
  19. Delay-Goyet P, Seguin C, Gacel G, Roques BP (1988) 3H-[D-Ser2(O-tert-butyl), Leu5]enkephalyl-Thr6 and [D-Ser2(O-tert-butyl), Leu5]enkephalyl-Thr6(O-tert-butyl), two new enkephalin analogs with both a good selectivity and a high affinity toward delta-opioid binding sites. J Biol Chem 263:4124–4130PubMedGoogle Scholar
  20. Demoliou-Mason CD, Barnard EA (1984) Solubilization in high yield of opioid receptors retaining high-affinity delta, mu and kappa binding sites. FEBS Lett 170: 378–382PubMedCrossRefGoogle Scholar
  21. Erspamer V, Melchiorri P, Falconieri-Erspamer G, Negri L, Corsi R, Severini C, Barra D, Simmaco M, Kreil G (1989) Deltorphins: a family of naturally occurring peptides with high affinity and selectivity for delta opioid binding sites. Proc Natl Acad Sci USA 86: 5188–5192PubMedCrossRefGoogle Scholar
  22. Fujioka T, Inoue F, Kurujama M (1985) Purification of opioid binding materials from rat brain. Biochem Biophys Res Commun 131: 640–646PubMedCrossRefGoogle Scholar
  23. Gacel G, Fournie-Zaluskie M-C, Roques BP (1980) Tyr-DSer-Gly-Phe-Leu-Thr, a highly preferential ligand for delta-opiate receptors. FEBS Lett 118: 245–247PubMedCrossRefGoogle Scholar
  24. Gairin JE, Jomary C, Pradayrol L, Cros J, Meunier J-C (1986) 125I-DPDYN, monoiodo[D-Pro10]dynorphin (1-11): a highly radioactive and selective probe for the study of kappa opioid receptors. Biochem Biophys Res Commun 134:1142–1150PubMedCrossRefGoogle Scholar
  25. Gilbert PE, Martin WR (1976) The effects of morphine- and nalorphine-like drugs in the nondependent morphine-dependent and cyclazocine-dependent chronic spinal dog. J Pharmacol Exp Ther 198: 66–82PubMedGoogle Scholar
  26. Gioannini TL, Foucaud B, Hiller JM, Hatten ME, Simon EJ (1982a) Lectin binding of solubilized opiate receptors: evidence for their glycoprotein nature. Biochem Biophys Res Commun 105: 1128–1134PubMedCrossRefGoogle Scholar
  27. Gioannini TL, Howells RD, Hiller JM, Simon EJ (1982b) Solubilization in good yield of active opiate binding sites from mammalian brain. Life Sci 31: 1315–1318PubMedCrossRefGoogle Scholar
  28. Gioannini TL, Howard AD, Hiller JM, Simon EJ (1984) Affinity chromatography of solubilized opioid binding sites using CH-Sepharose modified with a new naltrexone derivative. Biochem Biophys Res Commun 119: 624–629PubMedCrossRefGoogle Scholar
  29. Gioannini TL, Howard AD, Hiller JM, Simon EJ (1985) Purification of an active opioid binding protein from bovine striatum. J Biol Chem 260: 15117–15121PubMedGoogle Scholar
  30. Gioannini TL, Liu YF, Park YH, Hiller JM, Simon EJ (1989) Evidence for the presence of disulfide bridges in opioid receptors essential for ligand binding. Possible role in receptor activation. J Mol Recognit 2: 44–48Google Scholar
  31. Gioannini TL, Yao Y-H, Hiller JM, Simon EJ, Strader CD, Taylor L, Akil H, Watson S, Weiss ER, Johnson GL (1990) Studies using antibodies generated against peptide sequences from opioid binding protein and antibodies against rhodopsin. In: Van Ree JM, Mulder AH, Wiegant VM, Van Wimersma Greidanus TB (eds) New leads in opioid research. Excerpta Medica, Amsterdam, pp 168–169Google Scholar
  32. Gioannini TL, Weiss ER, Johnson GL, Hiller JM, Simon EJ (1992) Immunoblots with rhodopsin antisera suggest that a purified μ opioid binding protein has structural characteristics of a G-proootein-coupled receptor. Proc Natl Acad Sci USA 89: 52–55PubMedCrossRefGoogle Scholar
  33. Goldstein A, Nestor JJ Jr, Naidu A, Newmann SR (1988) DAKLI: a multipurpose ligand with a high affinity and selectivity for dynorphin (kappa opioid) binding sites. Proc Natl Acad Sci USA 85:7375–7379PubMedCrossRefGoogle Scholar
  34. Grevel J, Sadee W (1983) An opiate binding site in the rat brain is highly selective for 4, 5-epoxymorphinans. Science 221: 1198–1200Google Scholar
  35. Gulya K, Pelton JT, Hruby VJ, Yamamura HI (1986) Cyclic somatostatin octapeptide analogues with high affinity and selectivity toward mu opioid receptors. Life Sci 30: 2221–2229CrossRefGoogle Scholar
  36. Handa BK, Lane AC, Lord J AH, Morgan BA, Ranee MJ, Smith CFC (1981) Analogues of beta-LPH 61–64 possessing selective agonist activity at mu opiate receptors. Eur J Pharmacol 70: 531–540PubMedCrossRefGoogle Scholar
  37. Harris DW, Sethy VH (1980) High affinity binding of [3H]-ethylketocyclazocine to rat brain homogenate. Eur J Pharmacol 66: 121–123PubMedCrossRefGoogle Scholar
  38. Helmeste DM, Hammonds RGH Jr, Li CH (1986) Preparation of [125I-Tyr27, Leu5]betah-endorphin and its use for crosslinking of opioid binding sites in human striatum and NG108-15 neuroblastoma-glioma cells. Proc Natl Acad Sci USA 83: 4622–4625PubMedCrossRefGoogle Scholar
  39. Hiller JM, Simon EJ (1980) Specific high affinity 3H-ethylketocyclazocine binding in rat central nervous system: lack of evidence for kappa receptors. J Pharmacol Exp Ther 214: 516–519PubMedGoogle Scholar
  40. Hiller JM, Angel LM, Simon EJ (1984) Characterization of the selective inhibition of the delta sub-class of opioid binding sites by alcohols. Mol Pharmacol 25: 249–255PubMedGoogle Scholar
  41. Hiller JM, Fan LQ, Simon EJ (1990) Differential effects of cyanogen bromide on ligand binding by mu, delta and kappa opioid receptors. In: Van Ree JM, Mulder AH, Wiegant VM, Van Wimersma Greidanus TB (eds) New leads in opioid research. Excerpta Medica, Amsterdam, pp 166–167Google Scholar
  42. Howard AD, de la Baume S, Gioannini TL, Hiller JM, Simon EJ (1985) Covalent labeling of opioid receptors with radioiodinated human beta-endorphin. J Biol Chem 260: 10833–10839Google Scholar
  43. Howard AD, Gioannini TL, Hiller JM, Simon EJ (1986) Identification of distinct binding site subunits of mu and delta opiate receptors. Biochemistry 25: 357–360PubMedCrossRefGoogle Scholar
  44. Howells RD, Gioannini TL, Hiller JM, Simon EJ (1982) Solubilization and characterization of active opiate binding sites from mammalian brain. J Pharmacol Exp Ther 222: 629–634PubMedGoogle Scholar
  45. Itzhak Y, Hiller JM, Simon EJ (1984) Solubilization and characterization of mu, delta and kappa opioid binding sites from guinea pig brain: physical separation of kappa receptors. Proc Natl Acad Sci USA 81: 4217–4221PubMedCrossRefGoogle Scholar
  46. James IF, Goldstein A (1984) Site-directed alkylation of multiple opioid receptors: binding selectivity. Mol Pharmacol 25: 337–342PubMedGoogle Scholar
  47. Keren O, Gioannini TL, Hiller JM, Simon EJ (1988) Affinity cross-linking of 125I-labeled human beta-endorphin to cell lines possessing either mu- or delta type opioid binding sites. Brain Res 440: 280–284PubMedCrossRefGoogle Scholar
  48. Kornblum HI, Hurlbut DE, Leslie FM (1987) Postnatal development of multiple opioid receptors in rat brain. Brain Res Dev Brain Res 37: 21–41CrossRefGoogle Scholar
  49. Kosterlitz HW, Paterson SJ, Robson LE (1981) Characterization of the kappa-subtype of the opiate receptor in the guinea pig brain. Br J Pharmacol 73: 939–949PubMedGoogle Scholar
  50. Lahti RA, Mickelson MM, McCall JM, von Voigtlander PF (1985) 3H-U-69,593 a highly selective ligand for the opioid κ receptor. Eur J Pharmacol 109:281–284PubMedCrossRefGoogle Scholar
  51. Lemaire S, Magnan J, Regoli D (1978) Rat vas deferens: a specific bioassay for endogenous opioid peptides. Br J Pharmacol 64: 327–329PubMedGoogle Scholar
  52. Lord JAH, Waterfield AA, Hughes J, Kosterlitz HW (1977) Endogenous opioid peptides: multiple agonists and receptors. Nature 267: 495–499PubMedCrossRefGoogle Scholar
  53. Loukas S, Panetsos F, Merkouris M, Zioudrou C (1990) Purification of a 58kDa protein from rat brain membranes which binds selectively delta opioid agonists. In: Van Ree JM, Mulder AH, Wiegant VM, Van Wimersma Greidanus TB (eds) New leads in opioid research. Excerpta Medica, Amsterdam, pp 173–175Google Scholar
  54. Magnan J, Tiberi M (1989) Evidence for the presence of mu- and kappa- but not delta-opioid sites in the human fetal brain. Brain Res Dev Brain Res 45: 275–281PubMedCrossRefGoogle Scholar
  55. Magnan J, Paterson SJ, Tavani A, Kosterlitz HW (1982) The binding spectrum of narcotic analgesic drugs with different agonist and antagonist properties. Naunyn Schmiedebergs Arch Pharmacol 319: 197–205PubMedCrossRefGoogle Scholar
  56. Maneckjee R, Zukin RS, Archer S, Michael J, Osei-Gyimah P (1985) Purification and characterization of the mu opiate receptor from rat brain using affinity chromatography. Proc Natl Acad Sci USA 82: 594–598PubMedCrossRefGoogle Scholar
  57. Martin WR, Eades CG, Thompson JA, Huppler RE, Gilbert PE (1976) The effects of morphine- and nalorphine-like drugs in the nondependent and morphine- dependent chronic spinal dog. J Pharmacol Exp Ther 197: 517–532PubMedGoogle Scholar
  58. McDowell J, Kitchen I (1987) Development of opioid systems: peptides, receptors and pharmacology. Brain Res Rev 12: 397–421CrossRefGoogle Scholar
  59. McLean S, Rothman RB, Chuang DM, Rice KC, Spain JW, Coscia CJ, Roth RB (1989) Cross-linking of [125I]beta-endorphin to mu opioid receptors during development. Brain Res Dev Brain Res 45: 283–289PubMedCrossRefGoogle Scholar
  60. Mollereau C, Pascaud A, Baillat G, Mazarguil H, Puget A, Meunier J-C (1988) Evidence for a new type of opioid binding site in the brain of the frog Rana ridibunda. Eur J Pharmacol 20: 75–84CrossRefGoogle Scholar
  61. Mosberg HI, Hurst R, Hruby VJ, Gee K, Yamamura HI, Galligan JJ, Burks TF (1983) Bis-penicillamine enkephalins possess highly improved specificity toward delta opioid receptors. Proc Natl Acad Sci USA 80: 5871–5874PubMedCrossRefGoogle Scholar
  62. Newman EL, Barnard EA (1984) Identification of an opioid receptor subunit carrying the binding site. Biochemistry 23: 5385–5389PubMedCrossRefGoogle Scholar
  63. Nock B, Giodano AL, Cicero TJ, O’Connor LH (1990) Affinity of drugs and peptides for U-69,593-sensitive and -insensitive kappa opiate binding sites: the U-69,593-sensitive site appears to be the beta endorphin-specific epsilon receptor. J Pharmacol Exp Ther 254: 412–419PubMedGoogle Scholar
  64. Oetting GM, Szucs M, Coscia CJ (1987) Differential ontogeny of divalent cation effects on rat brain delta-, mu- and kappa-opioid receptor binding. Brain Res Dev Brain Res 31: 223–227CrossRefGoogle Scholar
  65. Ofri D, Ritter AM, Liu Y, Gioannini TL, Hiller JM, Simon EJ (1992) Characterization of solubilized opioid receptors: reconstitution and uncoupling of guanine-nucleotide-sensitive agonist binding. J Neurochem 58: 6628–6635CrossRefGoogle Scholar
  66. Oka T (1980) Enkephalin receptor in the rabbit ileum. Br J Pharmacol 68:198-195 Pasternak GW, Wood PL (1986) Multiple mu opiate receptors. Life Sci 38: 1889–1898Google Scholar
  67. Pert CB, Snyder SH (1973) Opiate receptor; demonstration in nervous tissue. Science 179: 1011–1014PubMedCrossRefGoogle Scholar
  68. Portoghese PS, Lipowski AW, Takemori AE (1987) Binaltorphimine and nor- binaltorphimine, potent and selective κ-opioid receptor antagonists. Life Sci 40: 1287–1292PubMedCrossRefGoogle Scholar
  69. Portoghese PS, Sultana M, Takemori AE (1988) Natrindole, a highly selective and potent non-peptide delta opioid receptor agonist. Eur J Pharmacol 146: 185–186PubMedCrossRefGoogle Scholar
  70. Robson LE, Kosterlitz HW (1979) Specific protection of the binding site of D-Ala2- D-Leu5-enkephalin (delta receptors) and dihydromorphine (mu-receptors). Proc R Soc Lond [Biol] 205: 425–432CrossRefGoogle Scholar
  71. Robson LE, Foote R, Maurer R, Kosterlitz HW (1984) Opioid binding sites of the kappa-type in guinea pig cerebellum. Neuroscience 12: 621–627PubMedCrossRefGoogle Scholar
  72. Ruegg UT, Cuenod S, Hiller JM, Gioannini TL, Howells RD, Simon EJ (1981) Characterization and partial purification of solubilized active opiate receptors from toad brain. Proc Natl Acad Sci USA 78: 4635–4638PubMedCrossRefGoogle Scholar
  73. Ruegg UT, Cuenoud S, Fulpius BW, Simon EJ (1982) Inactivation and solubilization of opiate receptors by phospholipase A2. Biochim Biophys Acta 685: 241–248PubMedCrossRefGoogle Scholar
  74. Schulz R, Faase E, Wiister M, Herz A (1979) Selective receptors for beta-endorphin on the rat vas deferens. Life Sci 24: 843–850PubMedCrossRefGoogle Scholar
  75. Schulz R, Wüster M, Krenss H, Herz A (1980) Lack of cross-tolerance on multiple opiate receptors in the mouse vas deferences. Mol Pharmacol 18: 395–401PubMedGoogle Scholar
  76. Schulz R, Wüster M, Herz A (1981a) Differentiation of opiate receptors in the brain by the selective development of tolerance. Pharmacol Biochem Behav 14: 75–79PubMedCrossRefGoogle Scholar
  77. Schulz R, Wüster M, Rubini P, Herz A (1981b) Functional opiate receptors in the guinea pig illeum: their differentiation by means of selective tolerance development. J Pharmacol Exp Ther 219: 547–550PubMedGoogle Scholar
  78. Simon EJ, Dole WP, Hiller JM (1972) Coupling of a new active morhpine derivative to Sepharose for affinity chromatography. Proc Natl Acad Sci USA 69: 1835–1837PubMedCrossRefGoogle Scholar
  79. Simon EJ, Hiller JM, Edelman I (1973) Stereospecific binding of the potent narcotic analgesic 3H-etorphine to rat brain homogenate. Proc Natl Acad Sci USA 70: 1947–1949PubMedCrossRefGoogle Scholar
  80. Simon EJ, Hiller JM, Edelman I (1975) Solubilization of a stereospecific opiate-macromolecular complex from rat brain. Science 190: 389–390PubMedCrossRefGoogle Scholar
  81. Simon EJ, Hiller JM, Groth J, Itzhak Y, Holland MJ, Beck SG (1982) The nature of the opiate receptors in toad brain. Life Sci 31: 1367–1370PubMedCrossRefGoogle Scholar
  82. Simon J, Benye S, Hepp J, Khan A, Borsodi A, Szucs M, Mezihradszky, K, Wolleman K (1987) Purification of a kappa-opioid receptor subtype from frog brain. Neuropeptides 101: 19–28CrossRefGoogle Scholar
  83. Simonds WF, Koski G, Streaty RA, Hjemlmeland LM, Klee WA (1980) Solubilization of active opiate receptors. Proc Natl Acad Sci USA 77: 4632–4627CrossRefGoogle Scholar
  84. Simonds WF, Burke TR Jr, Rice KC, Jacobson AE, Klee WA (1985) Purification of the opiate receptor of NG 108–15 neuroblastoma glioma hybrid cells. Proc Natl Acad Sci USA 82: 4974–4978PubMedCrossRefGoogle Scholar
  85. Smith JR, Simon EJ (1980) Selective protection of stereospecific enkephalin and opiate binding against inactivation by N-ethylmaleimide: evidence for two classes of opiate receptors. Proc Natl Acad Sci USA 77: 281–284PubMedCrossRefGoogle Scholar
  86. Su TP (1985) Further demonstration of kappa opioid binding sites in the brain: evidence for heterogeneity. J Pharmacol Exp Ther 232: 144–148PubMedGoogle Scholar
  87. Terenius L (1973) Stereospecific interaction between narcotic analgesics and a synaptic plasma membrane fraction of rat brain cortex. Acta Pharmacol Toxicol (Copenh) 32: 317–320CrossRefGoogle Scholar
  88. Toogood CIA, McFarthing KG, Hulme EC, Smyth DG (1986) Use of 125I-Tyr27- beta-endorphin for the study of beta-endorphin binding sites in rat cortex. Neuroendocrinology 43: 629–634PubMedCrossRefGoogle Scholar
  89. Ueda H, Harada H, Misawa H, Nozaki M, Takagi H (1987) Purified opioid mu receptor is of a different molecular size than delta and kappa receptors. Neurosci Lett 75: 339–344PubMedCrossRefGoogle Scholar
  90. Ueda H, Harada H, Nozaki M, Katada T, Ui M, Satoh M, Takagi H (1988) Reconstitution of rat brain mu opioid receptors with purified guanine nucleotide-binding regulatory protein Gi and Go. Proc Natl Acad Sci USA 85: 7013–7018PubMedCrossRefGoogle Scholar
  91. Vincent JP, Kartolovski B, Geneste P, Kamemka JM, Lazdunski M (1979) Interaction of phencyclidene (angle dust) with a specific receptor in rat brain membranes. Proc Natl Acad Sci USA 76: 4578–4582CrossRefGoogle Scholar
  92. Von Voigtlander PF, Lathi RA, Lundens JH (1983) U 50,488H; a selective and structurally novel non-mu (kappa) opioid agonist. J Pharmacol Exp Ther 224: 7–12Google Scholar
  93. Weiss ER, Hadcock JR, Johnson GL, Malbon CC (1987) Antipeptide antibodies directed against cytoplasmic rhodopsin sequences recognize the beta-adrenergic receptor. J Biol Chem 262: 4319–4323PubMedGoogle Scholar
  94. Wolozin BL, Pasternak GW (1981) Classification of multiple morphine and enkephalin binding sites in the central nervous system. Proc Natl Acad Sci USA 78: 6181–6185PubMedCrossRefGoogle Scholar
  95. Wüster M, Schulz R, Herz A (1978) Specificity of opioids towards the mu, delta and epsilon-opiate receptors. Neurosci Lett 15: 193–198CrossRefGoogle Scholar
  96. Yao Y-H, Gairin J, Meunier J-C, Hiller JM, Gioannini TL, Cros J, Simon EJ (1989) Crosslinking of kappa receptors in the guinea pig cerebellum with D-pro dynorphin (1–11). In: Cros J, Meunier J-C, Hamon M (eds) Progress in opioid research. Pergamon, Oxford, pp 21–24Google Scholar
  97. Zagon IS, Goodman SR, McLaughlin PJ (1989) Characterization of zeta: a new opioid receptor involved in growth. Brain Res 482: 297–305PubMedCrossRefGoogle Scholar
  98. Zipser B, Ruff MR, O’Neill JB, Smith CC, Higgins WJ, Pert CB (1988) The opiate receptor: a single llOkDa recognition molecule appears to be conserved in Tetrahymena, leech, and rat. Brain Res 463: 296–304PubMedCrossRefGoogle Scholar
  99. Zukin, RS, Eghbali M, Olive D, Unterwald EM, Tempel A (1988) Characterization and visualization of rat and guinea pig brain kappa opioid receptors: evidence for kappa1 and kappa2 opioid receptors. Proc Natl Acad Sci USA 85: 4061–4065PubMedCrossRefGoogle Scholar
  100. Zukin SR, Zukin RS (1979) Specific 3H-phencyclidine binding in rat central nervous system. Proc Natl Acad Sci USA 76: 5372–5376PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • E. J. Simon
  • T. L. Gioannini

There are no affiliations available

Personalised recommendations