Advertisement

Opioids pp 27-36 | Cite as

Expression Cloning of cDNA Encoding a Putative Opioid Receptor

  • Avram Goldstein
Chapter
  • 255 Downloads
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 104 / 1)

Abstract

The first demonstration of stereospecific opioid binding to brain membranes was reported 20 years ago (Goldstein et al. 1971), and the decisive demonstration of opioid receptors by ligand binding followed 2 years later (Terenius 1973; Pert and Snyder 1973; Simon et al. 1973; see also Chap. 1, this volume). The first membrane receptor to be cloned was the nicotinic acetylcholine receptor (Cold Spring Harbor Symposium 1983) from the specialized electric organs of electric fish — an extraordinarily rich source compared with ordinary skeletal muscle.

Keywords

Opioid Receptor Opioid Peptide Expression Cloning Electric Fish Chimeric Peptide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barrett RW, Goldstein A (1985) A monoclonal antibody specific for a dynorphin precursor. Neuropeptides 6: 113–120PubMedCrossRefGoogle Scholar
  2. Cold Spring Harbor Symposia in Quantitative Biology (1983) Acetylcholine receptor and its channel. In: Watson JD, McKay R (eds) Molecular Neurobiology, vol. 48, pp 1–146Google Scholar
  3. Dohlman HG, Thorner J, Caron MG, Lefkowitz RJ (1991) Model systems for the study of seven-transmembrane-segment receptors. Annu Rev Biochem 60: 653–688PubMedCrossRefGoogle Scholar
  4. Fischli W, Goldstein A, Hunkapiller MW, Hood LE (1982) Isolation and amino acid sequence of a 4000-dalton dynorphin from porcine pituitary. Proc Natl Acad Sci USA 79: 5435–5437PubMedCrossRefGoogle Scholar
  5. Goldstein A, Lowney LI, Pal BK (1971) Stereospecific and nonspecific interactions of the morphine congener levorphanol in subcellular fractions of mouse brain. Proc Natl Acad Sci USA 68: 1742–1747PubMedCrossRefGoogle Scholar
  6. Goldstein A, Tachibana S, Lowney LI, Hunkapiller M, Hood L (1979) Dynorphin- (1-13), an extraordinarily potent opioid peptide. Proc Natl Acad Sci USA 76: 6666–6670PubMedCrossRefGoogle Scholar
  7. Goldstein A, Fischli W, Lowney LI, Hunkapiller M, Hood L (1981) Porcine pituitary dynorphin: complete amino acid sequence of the biologically active heptadecapeptide. Proc Natl Acad Sci USA 78: 7219–7223PubMedCrossRefGoogle Scholar
  8. Goldstein A (1982) Dynorphin and the dynorphin receptor: some implications of gene duplication of the opioid message. In: Schmitt FO, Bird SJ, Bloom FE (eds) Molecular genetic neuroscience. Raven, New York, pp 249–262Google Scholar
  9. Goldstein A, Nestor JJ Jr, Naidu A, Newman SR (1988) DAKLI: A multipurpose ligand with high affinity and selectivity for dynorphin (kappa opioid) binding sites. Proc Natl Acad Sci USA 85: 7375–7379Google Scholar
  10. Hempstead BL, Martin-Zanca D, Kaplan DR, Parada LF, Chao MV (1991) High- affinity NGF binding requires coexpression of the trk proto-oncogene and the low-affinity NGF receptor. Nature 350: 678–683PubMedCrossRefGoogle Scholar
  11. Ishihara T, Nakamura S, Kaziro Y, Takahashi T, Takahashi K, Nagata S (1991) Molecular cloning and expression of a cDNA encoding the secretin receptor. Embo J 10: 1635–1641PubMedGoogle Scholar
  12. Maneckjee R, Minna JD (1990) Opioid and nicotine receptors affect growth regulation of human lung cancer cell lines. Proc Natl Acad Sci USA 87: 3294–3298PubMedCrossRefGoogle Scholar
  13. Okayama H, Berg P (1983) A cDNA cloning vector that permits expression of cDNA inserts in mammalian cells. Mol Cell Biol 3: 280–289PubMedGoogle Scholar
  14. Pert CB, Snyder SH (1973) Opiate receptor: demonstration in nervous tissue. Science 179: 1011–1014PubMedCrossRefGoogle Scholar
  15. Radeke MJ, Misko TP, Hsu C, Herzenberg LA, Shooter EM (1987) Gene transfer and molecular cloning of the rat nerve growth factor receptor. Nature 325: 593–597PubMedCrossRefGoogle Scholar
  16. Schofield PR, McFarland KC, Hayflick JS, Wilcox JN, Cho TM, Roy S, Lee NM, Loh HH, Seeburg PH (1989) Molecular characterization of a new immunoglobulin superfamily protein with potential roles in opioid binding and cell contact. Embo J 8: 489–495PubMedGoogle Scholar
  17. Shigemoto R, Yokota Y, Tsuchida K, Nakanishi S (1990) Cloning and expression of a rat neuromedin K receptor cDNA. J Biol Chem 265: 623–628PubMedGoogle Scholar
  18. Simon EJ (1991) Opioid receptors and endogenous opioid peptides. Med Res Rev 2: 357–374CrossRefGoogle Scholar
  19. Simon EJ, Hiller JM, Edelman I (1973) Stereospecific binding of the potent narcotic analgesic [3H] etorphine to rat-brain homogenate. Proc Natl Acad Sci USA 70: 1947–1949PubMedCrossRefGoogle Scholar
  20. Takahashi K, Tanaka A, Hara M, Nakanishi S (1992) The primary structures and gene organizations of human substance P and neuromedin K receptors. Eur J Biochem 204: 1025–1033PubMedCrossRefGoogle Scholar
  21. Terenius L (1973) Stereospecific interaction between narcotic analgesics and a synaptic plasma membrane fraction of rat cerebral cortex. Acta Pharmacol Toxicol 32: 317–320CrossRefGoogle Scholar
  22. Xie G, Miyajima A, Yokota T, Arai K, Goldstein A (1990) Chimeric opioid peptides: tools for identifying opioid receptor types. Proc Natl Acad Sci USA 87: 3180–3184PubMedCrossRefGoogle Scholar
  23. Xie G-X, Miyajima A, Goldstein A (1992) Expression cloning of cDNA encoding a seven-helix receptor from human placenta with affinity for opioid ligands. Proc Natl Acad Sci USA 89: 4124–4128PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Avram Goldstein

There are no affiliations available

Personalised recommendations