Opioids pp 499-528 | Cite as

Atypical Opioid Peptides

  • H. Teschemacher
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 104 / 1)


The term “atypical opioid peptides” as used in this article requires definition. Opioid activity may be displayed by compounds with alkaloid or with peptide structure. Opioids with peptide structure may be of natural origin or they may be synthetic derivatives of the natural compounds. The natural opioid peptides may be subdivided again in “typical” and “atypical” opioid peptides; their synthetic derivatives thus may be subdivided in “typical” and “atypical” opioid peptide analogues.


Opioid Receptor Opioid Peptide Opioid Antagonist Parent Protein Opioid Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amiche M, Sagan S, Mor A, Delfour A, Nicolas P (1989) Dermenkephalin (Tyr-D- Met-Phe-His-Leu-Met-Asp-NH2): a potent and fully specific agonist for the δ opioid receptor. Mol Pharmacol 35: 774–779PubMedGoogle Scholar
  2. Anderson S, Bankier AT, Barrell BG, de Bruijn MHL, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG (1981) Séquence and organization of the human mitochondrial genome. Nature 290: 457–465Google Scholar
  3. Baralle FE, Shoulders CC, Proudfoot NJ (1980) The primary structure of the human ε-globin gene. Cell 21: 621–626PubMedCrossRefGoogle Scholar
  4. Brantl V (1984) Novel opioid peptides derived from human P-casein: Human P- casomorphins. Eur J Pharmacol 106: 213–214PubMedCrossRefGoogle Scholar
  5. Brantl V, Teschemacher H, Bläsig J, Henschen A, Lottspeich F (1981) Opioid activities of β-casomorphins. Life Sci 28: 1903–1909PubMedCrossRefGoogle Scholar
  6. Brantl V, Pfeiffer A, Herz A, Henschen A, Lottspeich F (1982) Antinociceptive potencies of β-casomorphin analogs as compared to their affinities towards μ and δ opiate receptor sites in brain and periphery. Peptides 3: 793–797PubMedCrossRefGoogle Scholar
  7. Brantl V, Gramsch C, Lottspeich F, Henschen A, Jaeger KH, Herz A (1985) Novel opioid peptides derived from mitochondrial cytochrome b: cytochrophins. Eur J Pharmacol 111: 293–294PubMedCrossRefGoogle Scholar
  8. Brantl V, Gramsch C, Lottspeich F, Mertz R, Jaeger KH, Herz A (1986) Novel opioid peptides derived from hemoglobin: hemorphins. Eur J Pharmacol 125: 309–310PubMedCrossRefGoogle Scholar
  9. Braunitzer G, Chen R, Schrank B, Stangl A (1973) Die Sequenzanalyse des β- Lactoglobulins. Hoppe-Seylers Z Physiol Chem 354: 867–878PubMedCrossRefGoogle Scholar
  10. Brew K, Castellino FJ, Vanaman TC, Hill RL (1970) The compléte amino acid séquence of bovine α-lactalbumin. J Biol Chem 245: 4570–4582PubMedGoogle Scholar
  11. Broccardo M, Erspamer V, Falconieri Erspamer G, Improta G, Linari G, Melchiorri P, Montecucchi PC (1981) Pharmacological data on dermorphins, a new class of potent opioid peptides from amphibian skin. Br J Pharmacol 73: 625–631PubMedGoogle Scholar
  12. Bueno L, Fioramonti J, Menezo Y (1985) Central opioid–like influence of a tetrapeptide from hamster embryo (kentsin) on gastrointestinal motility in dogs. Eur J Pharmacol 114: 67–70PubMedCrossRefGoogle Scholar
  13. Chang KJ, Killian A, Hazum E, Cuatrecasas P, Chang JK (1981) Morphiceptin (NH2-Tyr-Pro-Phe-Pro-CONH2): a potent and specific agonist for morphine (μ) receptors. Science 212: 75–77PubMedCrossRefGoogle Scholar
  14. Chang KJ, Wei ET, Killian A, Chang JK (1983) Potent morphiceptin analogs: structure, activity relationships and morphine-like activities. J Pharmacol Exp Ther 227: 403–408PubMedGoogle Scholar
  15. Chang KJ, Su YF, Brent DA, Chang JK (1985) Isolation of a specific μ-opiate receptor peptide, morphiceptin, from an enzymatic digest of milk protein. J Biol Chem 260: 9706–9712PubMedGoogle Scholar
  16. Chiba H, Yoshikawa M (1986) Biologically functional peptides from food proteins: new opioid peptides from milk proteins. In: Feeney RE, Whitaker JR (eds) Protein tailoring for food and medical uses. Dekker, New York, pp 123–153Google Scholar
  17. Chiba H, Tani F, Yoshikawa M (1989) Opioid antagonist peptides derived from K–casein. J Dairy Res 56: 363–366PubMedCrossRefGoogle Scholar
  18. Corbett AD, Gillan MGC, Kosterlitz HW, McKnight AT, Paterson SJ, Robson LE (1984) Selectivities of opioid peptide analogues as agonists and antagonists at the δ–receptor. Br J Pharmacol 83: 271–279PubMedGoogle Scholar
  19. Daniel H, Vohwinkel M, Rehner G (1990a) Effect of casein and β–casomorphins on gastrointestinal motility in rats. J Nutr 120: 252–257PubMedGoogle Scholar
  20. Daniel H, Wessendorf A, Vohwinkel M, Brantl V (1990b) Effect of D-Ala2,4, Tyr5-β- casomorphin-5-amide on gastrointestinal functions. In: Nyberg F, Brantl V (eds) β-casomorphins and related peptides. Fyris–Tryck, Uppsala, pp 95–104Google Scholar
  21. Davis TP, Gillespie TJ, Porreca F (1989) Peptide fragments derived from the P-chain of hemoglobin (hemorphins) are centrally active in vivo. Peptides 10: 747–751PubMedCrossRefGoogle Scholar
  22. De Ponti F, Marcoli M, Lecchini S, Manzo L, Frigo GM, Crema A (1988) Effect of β-casomorphins on intestinal propulsion in the guinea-pig colon. J Pharm Pharmacol 41: 302–305CrossRefGoogle Scholar
  23. Ermisch A, Riihle HJ, Neubert K, Hartrodt B, Landgraf R (1983) On the blood-brain barrier to peptides: [3H]β-casomorphin-5 uptake by eighteen brain regions in vivo. J Neurochem 41: 1229–1233PubMedCrossRefGoogle Scholar
  24. Erspamer V, Melchiorri P, Broccardo M, Falconieri Erspamer G, Falaschi P, Improta G, Negri L, Renda T (1981) The brain-gut-skin triangle: new peptides. Peptides 2: 7–16PubMedCrossRefGoogle Scholar
  25. Erspamer V, Melchiorri P, Falconieri-Erspamer G, Negri L, Corsi R, Severini C, Barra D, Simmaco M, Kreil G (1989) Deltorphins: a family of naturally occurring peptides with high affinity and selectivity for δ opioid binding sites. Proc Natl Acad Sci USA 86: 5188–5192PubMedCrossRefGoogle Scholar
  26. Faris PL, Komisaruk BR, Watkins LR, Mayer DJ (1983) Evidence for the neuropeptide cholecystokinin as an antagonist of opiate analgesia. Science 219: 310–312Google Scholar
  27. Findlay JBC, Brew K (1972) The compléte amino-acid séquence of human a- lactalbumin. Eur J Biochem 27: 65–86PubMedCrossRefGoogle Scholar
  28. Galina ZH, Kastiri A J (1986) Existence of antiopiate systems as illustrated by MIF- 1/Tyr-MIF–l. Life Sci 39: 2153–2159PubMedCrossRefGoogle Scholar
  29. Graf L, Horvath K, Walcz E, Berzetei I, Burnier J (1987) Effect of two synthetic α-gliadin peptides on lymphocytes in celiac disease: identification of a novel class of opioid receptors. Neuropeptides 9: 113–122PubMedCrossRefGoogle Scholar
  30. Greenberg R, Groves ML, Dower HJ (1984) Human β-casein. Amino acid séquence and identification of phosphorylation sites. J Biol Chem 259: 5132–5138Google Scholar
  31. Hartrodt B, Neubert K, Fischer G, Demuth U, Yoshimoto T, Barth A (1982a) Degradation of β-casomorphin-5 by proline-specific endopeptidase (PSE) and post-proline cleaving enzyme ( PPCE ). Pharmazie 37: 72–73Google Scholar
  32. Hartrodt B, Neubert K, Fischer G, Schulz H, Barth A (1982b) Synthese undenzymatischer Abbau von β-Casomorphin-5. Pharmazie 37: 165–169PubMedGoogle Scholar
  33. Hautefeuille M, Brantl V, Dumontier AM, Desjeux JF (1986) In vitro effects of β-casomorphins on ion transport in rabbit ileum. Am J Physiol 250:G92–G97Google Scholar
  34. Hedner J, Hedner T (1987) β-Casomorphins induce apnea and irregular breathing in adult rats and new-born rabbits. Life Sci 41:2303–2312CrossRefGoogle Scholar
  35. Henschen A, Lottspeich F, Brantl V, Teschemacher H (1979) Novel opioid peptides derived from casein (β–casomorphins). II. Structure of active components from bovine casein peptone. Hoppe-Seylers Z Physiol Chem 360: 1217–1224Google Scholar
  36. Kastin AJ, Olson RD, Ehrensing RH, Berzas MC, Schally A, Coy DH (1979) MIF- l’s differential actions as an opiate antagonist. Pharmacol Biochem Behav 11: 721–723PubMedCrossRefGoogle Scholar
  37. Kisara K, Sakurada S, Sakurada T, Sasaki Y, Sato T, Suzuki K, Watanabe H (1986) Dermorphin analogues containing D-kyotorphin: structure-antinociceptive relationships in mice. Br J Pharmacol 87: 183–189PubMedGoogle Scholar
  38. Koch G, Brantl V (1990) Binding of β-casomorphins to opioid receptors. In: Nyberg F, Brantl V (eds) P-Casomorphins and related peptides, Fyris-Tryck, Uppsala, pp 43–52Google Scholar
  39. Koch G, Wiedemann K, Teschemacher H (1985) Opioid activities of human β-casomorphins. Naunyn-Schmiedebergs Arch Pharmacol 331: 351–354PubMedCrossRefGoogle Scholar
  40. Koch G, Wiedemann K, Drebes E, Zimmermann W, Link G, Teschemacher H (1988) Human β–casomorphin-8 immunoreactive material in the plasma of women during pregnancy and after delivery. Regul Peptides 20: 107–117CrossRefGoogle Scholar
  41. Koldovsky O, Thornburg W (1987) Hormones in milk. A review. J Pediatr Gastroenterol Nutr 6: 172–196Google Scholar
  42. Kosaka T, Sakurada S, Sakurada T, Sato T, Kisara K, Hosono M, Sasaki Y, Suzuki K (1985) Antinociceptive properties of a new tetrapeptide, Asn-Ala-Gly-Ala, in mice. Arch Int Pharmacodyn 277: 280–288Google Scholar
  43. Kreil G, Barra D, Simmaco M, Erspamer V, Falconieri Erspamer G, Negri L, Severini C, Corsi R, Melchiorri P (1989) Deltorphin, a novel amphibian skin peptide with high selectivity and affinity for 5 opioid receptors. Eur J Pharmacol 162: 123–128PubMedCrossRefGoogle Scholar
  44. Lawn RM, Efstratiadis A, O’Connell C, Maniatis T (1980) The nucleotide séquence of the human β-globin gene. Cell 21: 647–651PubMedCrossRefGoogle Scholar
  45. Lazarus LH, Guglietta A, Wilson WE, Irons BJ, de Castiglione R (1989a) Dimeric dermorphin analogues asμ–receptor probes on rat brain membranes. J Biol Chem 264: 354–362Google Scholar
  46. Lazarus LH, Wilson WE, de Castiglione R, Guglietta A (1989b) Dermorphin gene séquence peptide with high affinity and selectivity for δ-opioid receptors. J Biol Chem 264: 3047–3050Google Scholar
  47. Liebmann C, Szücs M, Neubert K, Hartrodt B, Arold H, Barth A (1986) Opiate receptor binding affinities of some D-amino acids substituted β-casomorphin analogs. Peptides 7: 195–199PubMedCrossRefGoogle Scholar
  48. Liebmann C, Schrader U, Brantl V (1989) Opioid receptor affinities of the blood- derived tetrapeptides hemorphin and cytochrophin. Eur J Pharmacol 166: 523–526PubMedCrossRefGoogle Scholar
  49. Lindström LH, Nyberg F, Terenius L, Bauer K, Besev G, Gunne LM, Lyrenas S, Willdeck-Lund G, Lindberg B (1984) CSF and plasma β-casomorphin-like opioid peptides in post-partum psychosis. Am J Psychiatry 141: 1059–1066PubMedGoogle Scholar
  50. Lönnerdal B, Bergstrom S, Andersson Y, Hjalmarsson K, Sundqvist AK, Hernell O (1990) Cloning and sequencing of a cDNA encoding human milk β–casein. FEBS Lett 269: 153–156PubMedCrossRefGoogle Scholar
  51. Loukas S, Varoucha D, Zioudrou C, Streaty RA, Klee WA (1983) Opioid activities and structures of a-casein-derived exorphins. Biochemistry 22: 4567–4573PubMedCrossRefGoogle Scholar
  52. Loukas S, Panetsos F, Donga E, Zioudrou C (1990) Selective δ–antagonist peptides, analogs of α-casein exorphin, as probes for the opioid receptor. In: Nyberg F, Brantl V (eds) β-Casomorphins and related peptides. Fyris–Tryck, Uppsala, pp 65–75Google Scholar
  53. Mansfeld R, Kautni J, Grunert E, Brantl V, Jochle W (1990) Clinical application of bovine p-casomorphins for treatment of calf diarrhea. In: Nyberg F, Brantl V (eds) P-Casomorphins and related peptides. Fyris-Tryck, Uppsala, pp 105–108Google Scholar
  54. Matthies H, Stark H, Hartrodt B, Rüthrich HL, Spieler HT, Barth A, Neubert K (1984) Derivatives of β-casomorphins with high analgesic potency. Peptides 5: 463–470PubMedCrossRefGoogle Scholar
  55. Meisel H (1986) Chemical characterization and opioid activity of an exorphin isolated from in vivo digests of casein. FEBS Lett 196: 223–227PubMedCrossRefGoogle Scholar
  56. Meisel H, Schlimme E (1990) Milk proteins: precursors of bioactive peptides. Trends Food Sci Technol 1: 41–43CrossRefGoogle Scholar
  57. Mercier JC, Grosclaude F, Ribadeau-Dumas B (1971) Structure primaire de la caseine αs1-bovine: séquence compléte. Eur J Biochèm 23: 41–51PubMedCrossRefGoogle Scholar
  58. Mercier JC, Brignon G, Ribadeau-Dumas B (1973) Structure primaire de la casein kB bovine: séquence compléte. Eur J Biochem 35: 222–235PubMedCrossRefGoogle Scholar
  59. Metz-Boutigue MH, Jollés J, Mazurier J, Schoentgen F, Legrand D, Spik G, Montreuil J, Jolles P (1984) Human lactotransferrin: amino acid séquence and structural comparisons with other transferrins. Eur J Biochem 145: 659–676PubMedCrossRefGoogle Scholar
  60. Montecucchi PC, de Castiglione R, Piani S, Gozzini L, Erspamer V (1981a) Amino acid composition and séquence of dermorphin, a novel opiate-like peptide from the skin of Phyllomedusa sauvagei. Int J Pept Protein Res 17: 275–283Google Scholar
  61. Montecucchi PC, de Castiglione R, Erspamer V (1981b) Identification of dermorphin and Hyp6-dermorphin in skin extracts of the Brazilian frog Phyllomedusa rhodei. Int J Pept Protein Res 17: 316–321Google Scholar
  62. Mor A, Delfour A, Sagan S, Amiche M, Pradelles P, Rossier J, Nicolas P (1989) Isolation of dermenkephalin from amphibian skin, a high-affinity δ-selective opioid heptapeptide containing a D–amino acid residue. FEBS Lett 255: 269–274PubMedCrossRefGoogle Scholar
  63. Mor A, Pradelles P, Delfour A, Montagne JJ, Quintero FL, Conrath M, Nicolas P (1990) Evidence for pro-dermorphin processing products in rat tissu s. Biochem Biophys Res Commun 170: 30–38PubMedCrossRefGoogle Scholar
  64. Morley JE (1982) Food peptides: a new class of hormones? J Am Med Assoc 247: 2379–2380CrossRefGoogle Scholar
  65. Neubert K, Hartrodt B, Born I, Barth A, Ruethrich HL, Grecksch G, Schrader U, Liebmann C (1990) Structural modifications of β-casomorphin-5 and related peptides. In: Nyberg F, Brantl V (eds) P-Casomorphins and related peptides. Fyris-Tryck, Uppsala, pp 15–20Google Scholar
  66. Nyberg F, Lieberman H, Lindström LH, Lyrenäs S, Koch G, Terenius L (1989) Immunoreactive β-casomorphin-8 in cerebrospinal fluid from pregnant and lactating women: a positive correlation with plasma levels. J Clin Endocrinol Metab 68: 283–289PubMedCrossRefGoogle Scholar
  67. Paroli E (1988) Opioid peptides from food (the exorphins). World Rev Nutr Diet 55: 58–97PubMedGoogle Scholar
  68. Payan DG, Horváth K, Gráf L (1987) Specific high-affinity binding sites for a synthetic gliadin heptapeptide on human peripheral blood lymphocytes. Life Sci 40: 1229–1236PubMedCrossRefGoogle Scholar
  69. Petrilli P, Addeo F, Chianese L (1983) Primary structure of water buffalo β-casein: tryptic and CNBr peptides. Ital J Biochem 32: 336–344PubMedGoogle Scholar
  70. Petrilli P, Picone D, Caporale C, Addeo F, Auricchio S, Marino G (1984) Does casomorphin have a functional role? FEBS Lett 169: 53–56PubMedCrossRefGoogle Scholar
  71. Provot C, Persuy MA, Mercier JC (1989) Compléte nucleotide séquence of ovine β-casein cDNA: inter-species comparison. Biochimie 71: 827–832PubMedCrossRefGoogle Scholar
  72. Raffa RB, Jacoby HI (1989) A-18-famide and F-8-famide, endogenous mammalian equivalents of the molluscan neuropeptide FMRF amide (Phe-Met-Arg-Phe-NH2), inhibit colonic bead expulsion time in mice. Peptides 10: 873–875PubMedCrossRefGoogle Scholar
  73. Ramabadran K, Bansinath M (1988) Opioid peptides from milk as a possible cause of sudden infant death syndrome. Med Hypotheses 27: 181–187PubMedCrossRefGoogle Scholar
  74. Ramabadran K, Bansinath M (1989) Pharmacology of β-casomorphins, opioid peptides derived from milk protein. Asia Pac J Pharmacol 4: 45–58Google Scholar
  75. Ramabadran K, Moore BE (1988) Sudden infant death syndrome and opioid peptides from milk. Am J Dis Child 142: 12–13PubMedGoogle Scholar
  76. Read LC, Lord APD, Brantl V, Koch G (1990) Absorption of β–casomorphins from autoperfused lamb and piglet small intestine. Am J Physiol 259: G443–452PubMedGoogle Scholar
  77. Ribadeau-Dumas B, Brignon G, Grosclaude F, Mercier JC (1972) Structure primaire de la caseine P bovine. Séquence compléte. Eur J Biochem 25: 505–514Google Scholar
  78. Richardson BC, Mercier JC (1979) The primary structure of the ovine β-caseins. Eur J Biochem 99: 285–297PubMedCrossRefGoogle Scholar
  79. Richter K, Egger R, Kreil G (1987) D-Alanine in the frog skin peptide dermorphin is derived from L–alanine in the precursor. Science 238: 200–202PubMedCrossRefGoogle Scholar
  80. Richter K, Egger R, Negri L, Corsi R, Severini C, Kreil G (1990) cDNAs encoding [D-Ala2]deltorphin precursors from skin of Phyllomedusa bicolor also contain genetic information for three dermorphin-related opioid peptides. Proc Natl Acad Sci USA 87:4836–4839Google Scholar
  81. Sagan S, Amiche M, Delfour A, Mor A, Camus A, Nicolas P (1989) Molecular determinants of receptor affinity and selectivity of the natural δ-opioid agonist, dermenkephalin. J Biol Chem 264: 17100–17106PubMedGoogle Scholar
  82. Schams D, Karg H (1986) Hormones in milk. Ann N Y Acad Sci 464: 75–86PubMedCrossRefGoogle Scholar
  83. Scheffler H, Koch G, Brantl V, Teschemacher H (1990) Release of opioid peptide immunoreactive materials from pituitary tissue upon stimulation with a hemoglobin fragment, hemorphin-4, in vitro. In: van Ree JM, Mulder AH, Wiegant VM, van Wimersma Greidanus TB (eds) New leads in opioid research. Excerpta Medica, Amsterdam, pp 379–380Google Scholar
  84. Schiller PW, Nguyen TMD, Chung NN, Lemieux C (1989) Dermorphin analogues carrying an increased positive net charge in their “message” domain display extremely hi h opioid receptor selectivity. J Med Chem 32: 698–703PubMedCrossRefGoogle Scholar
  85. Schiller PW, Nguyen TMD, Weltrowska G, Lemieux C, Chung NN (1990) Development of [D–Ala2]deltorphin I analogs with extraordinary delta receptor selectivity. In: van Ree JM, Mulder AH, Wiegant VM, van W mersma Greidanus TB (eds) New leads in opioid research. Excerpta Medica, Amsterdam, pp 288–290Google Scholar
  86. Singh M, Rosen CL, Chang KJ, Haddad GG (1989) Plasma β-casomorphin-7 immunoreactive peptide increases af er milk intake in newborn but not in adult dogs. Pediatr Res 26: 34–38PubMedCrossRefGoogle Scholar
  87. Slightom JL, Blechl AE, Smithies O (1980) Human fetal Gy and Vglobin genes: compléte nucleotide séquences suggest that DNA can be exchanged between these duplicated genes. Cell 21: 627–638PubMedCrossRefGoogle Scholar
  88. Spritz RA, DeRiel JK, Forget BG, Weissman SM (1980) Compléte nucleotide séquence of the human 5-globin gene. Cell 21: 639–646PubMedCrossRefGoogle Scholar
  89. Svedberg J, de Haas J, Leimenstoll G, Paul F, Teschemacher H (1985) Demonstration of β-casomorphin immunoreactive materials in in vitro digests of bovine milk and in small intestine contents after bovine milk ingestion in adult humans. Peptides 6: 825–830Google Scholar
  90. Tang J, Yang HYT, Costa E (1984) Inhibition of spontaneous and opiate-modified nociception by an endogeneous neuropeptide with Phe-Met-Arg-Phe-NH2-like immunoreactivity. Proc Natl Acad Sci USA 81: 5002–5005PubMedCrossRefGoogle Scholar
  91. Takagi H, Shiomi H, Ueda H, Amano H (1979) A novel analgesic dipeptide from bovine brain is a possible Met-enkephalin releaser. Nature 282: 410–412PubMedCrossRefGoogle Scholar
  92. Teschemacher H (1987a) Casein-derived opioid peptides: physiological significance? Adv Biosci 65: 41–48Google Scholar
  93. Teschemacher H (1987b) β-Casomorphins: do they have physiological significance? In: Goldman AS, Atkinson SA, Hanson LA (eds) Human lactation 3. Plenum, New York, pp 213–225Google Scholar
  94. Teschemacher H, Koch G (1990) β-Casomorphins: possible physiological significance. In: Nyberg F, Brantl V (eds) β-Casomorphins and related peptides. Fyris-Tryck, Uppsala, pp 143–149Google Scholar
  95. Teschemacher H, Koch G (1991) Opioids in the milk. Endocrine Regul 25: 147–150Google Scholar
  96. Teschemacher H, Umbach M, Hamel U, Praetorius K, Ahnert-Hilger G, Brantl V, Lottspeich F, Henschen A (1986) No evidence for the presence of P-casomorphins in human plasma after ingestion of cows’ milk or milk products. J Dairy Res 53: 135–138PubMedCrossRefGoogle Scholar
  97. Teschemacher H, Brantl V, Henschen A, Lottspeich F (1990) P-Casomorphins -7 β-casein fragments with opioid activity: detection and structure. In: Nyberg F, Brantl V (eds) β-Casomorphins and related peptides. Fyris-Tryck, Uppsala, pp 9–14Google Scholar
  98. Tomé D, Dumontier AM, Hautefeuille M, Desjeux JF (1987) Opiate activity and transepithelial passage of intact β-casomorphins in rabbit ileum. Am J Physiol 253: G737–744PubMedGoogle Scholar
  99. Ueda H, Yoshihara Y, Fukushima N, Shiomi H, Nakamura A, Takagi H (1987a) Kyotorphin (tyrosine-arginine) synthetase in rat brain synaptosomes. J Biol Chem 262: 8165–8173PubMedGoogle Scholar
  100. Ueda H, Fukushima N, Yoshihara Y, Takagi H (1987b) A Met-enkephalin releaser (kyotorphin)-induced release of plasma membrane-bound Ca2+ from rat brain synaptosomes. Brain Res 419: 197–200PubMedCrossRefGoogle Scholar
  101. Ueda H, Yoshihara Y, Misawa H, Fukushima N, Katada T, Ui M, Takagi H, Satoh M (1989) The kyotorphin (tyrosine-arginine) receptor and a selective reconstitution with purified Gi, measured with GTPase and phospholipase C assays. J Biol Chem 264: 3732–3741PubMedGoogle Scholar
  102. Umbach M, Teschemacher H, Praetorius K, Hirschhauser R, Bostedt H (1985) Demonstration of a β–casomorphin immunoreactive material in the plasma of newborn calves after milk intake. Regul Pept 12: 223–230PubMedCrossRefGoogle Scholar
  103. Watson, S, Abbott A (1989) Opioid receptors. Trends Pharmacol Sci 10, Receptor Nomenclature Supplement, p 21Google Scholar
  104. Yang HYT, Fratta W, Majane EA, Costa E (1985) Isolation, sequencing, synthesis, and pharmacological characterization of two brain neuropeptides that modulate the action of morphine. Proc Natl Acad Sci USA 82: 7757–7761PubMedCrossRefGoogle Scholar
  105. Yoshihara Y, Ueda H, Imajoh S, Takagi H, Satoh M (1988) Calcium-activated neutral protease ( CANP), a putative processing enzyme of the neuropeptide, kyotorphin, in the brain. Biochem Biophys Res Commun 155: 546–553Google Scholar
  106. Yoshikawa M, Yoshimura T, Chiba H (1984) Opioid peptides from human β-casein. Agric Biol Chem 48: 3185–3187CrossRefGoogle Scholar
  107. Yoshikawa M, Tani F, Yoshimura T, Chiba H (1986a) Opioid peptides from milk proteins. Agric Biol Chem 50: 2419–2421CrossRefGoogle Scholar
  108. Yoshikawa M, Tani F, Ashikaga T, Yoshimura T, Chiba H (1986b) Purification and characterization of an opioid antagonist from a peptic digest of bovine K-casein. Agric Biol Chem 50: 2951–2954CrossRefGoogle Scholar
  109. Yoshikawa M, Tani F, Chiba H (1988) Structure-activity relationship of opioid antagonist peptides derived from milk proteins. In: Shiba S, Sakakibara S (eds) Peptide chemistry. Protein Research Foundation, Osaka, pp 473–476Google Scholar
  110. Zadina JE, Kastin AJ (1986) Interactions of Tyr-MIF-1 at opiate receptor sites. Pharmacol Biochem Behav 25: 1303–1305PubMedCrossRefGoogle Scholar
  111. Zadina JE, Kastin AJ, Ge LJ, Brantl V (1990) Casomorphin-related peptides bind to non-opiate (Tyr-MIF-1) sites as well as opiate receptors in brain. In: Nyberg F, Brantl V (eds) β-Casomorphins and related peptides. Fyris-Tryck, Uppsala, pp 61–63Google Scholar
  112. Zioudrou C, Streaty RA, Klee WA (1979) Opioid peptides derived from food proteins. J Biol Chem 254: 2446–2449PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • H. Teschemacher

There are no affiliations available

Personalised recommendations