Opioids pp 645-679 | Cite as

Selectivity of Ligands for Opioid Receptors

  • A. D. Corbett
  • S. J. Paterson
  • H. W. Kosterlitz
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 104 / 1)


Since the discovery of the endogenous opioid peptides (Hughes et al. 1975b), our understanding of the mode of action of opioids has advanced rapidly. It is now known that in mammals the opioid peptides are derived from three precursor molecules, proopiomelanocortin (Mains et al. 1977; Robert and Herbert 1977a, b; Nakanishi et al. 1979), proenkephalin (Noda et al. 1982; Gubler et al. 1982), and prodynorphin (Kakidani et al. 1982; Fischli et al. 1982; Kilpatrick et al. 1982). Furthermore, the endogenous opioid peptides interact with three well-defined types of receptor, μ, δ, and ĸ (see Paterson et al. 1984).


Opioid Peptide Myenteric Plexus Relative Affinity Endogenous Opioid Peptide Opioid Binding Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akil H, Young E, Watson SJ (1981) Opiate binding properties of naturally occurring N- and C-terminus modified β-endorphins. Peptides 2: 289–292PubMedCrossRefGoogle Scholar
  2. Akiyama K, Gee KW, Mosberg HI, Hruby VJ, Yamamura HI (1985) Characterization of [3H][2-D-penicillamine,5-D-penicillamine]-enkephalin binding to 8 opiate receptors in the rat brain and neuroblastoma-glioma hybrid cell line (NG 108–15). Proc Natl Acad Sci USA 82: 2543–2547PubMedCrossRefGoogle Scholar
  3. Amiche M, Sagan S, Mor A, Delfour A, Nicolas P (1988) Characterization of the receptor binding profile of 3H-dermorphin in the rat brain. Int J Pept Protein Res 32: 506–511PubMedCrossRefGoogle Scholar
  4. Amiche M, Sagan S, Mor A, Delfour A, Nicolas P (1989) Dermenkephalin (Tyr-D- Met-Phe-His-Leu-Met-AsP-NH2): a potent and fully specific agonist for the δ-opioid receptor. Mol Pharmacol 35: 774–779PubMedGoogle Scholar
  5. Archer S, Seyed-Mozaffari A, Ward S, Kosterlitz HW, Paterson SJ, McKnight AT, Corbett AD (1985) 10-ketonaltrexone and 10-ketooxymorphone. J Med Chem 28:974–976Google Scholar
  6. Berzetei IP, Yamamura HI, Duckies SP (1987) Characterization of rabbit ear artery opioid receptors using a δ–selective agonist and antagonist. Eur J Pharmacol 139: 61–66PubMedCrossRefGoogle Scholar
  7. Berzetei IP, Fong A, Yamamura HI, Duckies SP (1988) Characterization of ĸ-opioid receptors in the rabbit ear artery. Eur J Pharmacol 151: 449–455PubMedCrossRefGoogle Scholar
  8. Birch PJ, Hayes AG, Sheehan MJ, Tyers MB (1987) Norbinaltorphimine: antagonist profile at K opioid receptors. Eur J Pharmacol 144: 405–408PubMedCrossRefGoogle Scholar
  9. Blumberg H, Dayton HB, George M, Rapaport DN (1961) N-allylnoroxymorphine: a potent narcotic antagonist. Fed Proc 2: 311Google Scholar
  10. Boyle SJ, Meecham KG, Hunter JC, Hughes J (1990) [3H]-CI-977: a highly selective ligand for the ĸ-opioid receptor in both guinea-pig and rat forebrain. Mol Neuropharmacol 1:23–29Google Scholar
  11. Chang KJ, Wei ET, Killian A, Chang JK (1983) Potent morphiceptin analogs: structure activity relationships and morphine-like properties. J Pharmacol Exp Ther 227: 403–408PubMedGoogle Scholar
  12. Chavkin C, James IF, Goldstein A (1982) Dynorphin is a specific endogenous ligand of the ĸ opioid receptor. Science 215: 413–415PubMedCrossRefGoogle Scholar
  13. Cheng Y-C, Prusoff WH (1973) Relationship between the inhibition constant (Ki) and the concentration of inhibitor which causes 50 per cent inhibition (150) of an enzymatic reaction. Biochem Pharmacol 22: 3099–3108PubMedCrossRefGoogle Scholar
  14. Clark CR, Birchmore B, Sharif NA, Hunter JC, Hill RG, Hughes J (1988) PD117302: a selective agonist for the ĸ-opioid receptor. Br J Pharmacol 93:618–626Google Scholar
  15. Cohen ML, Shuman RT, Osborne JJ, Gesellchen PD (1986) Opioid agonist activity of ICI 174864 and its carboxypeptidase degradation product, LY 281217. J Pharmacol Exp Ther 238: 769–771PubMedGoogle Scholar
  16. Corbett AD, Paterson SJ, McKnight AT, Magnan J, Kosterlitz HW (1982) Dynorphin-(l–8) and dynorphin-(l–9) are ligands for the K-subtype of opiate receptor. Nature 299: 79–81PubMedCrossRefGoogle Scholar
  17. Corbett AD, Gillan MGC, Kosterlitz HW, McKnight AT, Paterson SJ, Robson LE (1984) Selectivities of opioid peptide analogues as agonists and antagonists at the δ-receptor. Br J Pharmacol 83: 271–279PubMedGoogle Scholar
  18. Corbett AD, Gillan MGC, Kosterlitz HW, Paterson SJ (1985a) Binding and pharmacological profile of a highly selective ligand for the ĸ-opioid receptor - U-69,593. Br J Pharmacol 86: 704 PGoogle Scholar
  19. Corbett AD, Kosterlitz HW, McKnight AT, Paterson SJ, Robson LE (1985b) Pre-incubation of the guinea-pig myenteric plexus with β-funaltrexamine: discrepancy between binding assays and bioassays. Br J Pharmacol 85: 665–673PubMedGoogle Scholar
  20. Corbett AD, Kosterlitz HW (1986) Bremazocine is an agonist at ĸ-opioid receptors and an antagonist at μ–opioid receptors in the guinea pig myenteric plexus. Br J Pharmacol 89: 245–249PubMedGoogle Scholar
  21. Costa T, Wüster M, Herz A, Shimohigashi Y, Chen H-C, Rodbard D (1985) Receptor binding and biological activity of bivalent enkephalins. Biochem Pharmacol 34: 25–30PubMedCrossRefGoogle Scholar
  22. Costello GF, Main BG, Barlow JJ, Carroll JA, Shaw JS (1988) A novel series of potent and selective agonists at opioid ĸ-receptors. Eur J Pharmacol 151:475–478Google Scholar
  23. Cotton R, Giles MG, Miller L, Shaw JS, Timms D (1984) ICI 174864: a highly selective antagonist for the opioid δ-receptor. Eur J Pharmacol 97: 331–332PubMedCrossRefGoogle Scholar
  24. Cotton R, Kosterlitz HW, Paterson SJ, Ranee MJ, Traynor JR (1985) The use of [3H]-[D-Pen2,D-Pen5]enkephalin as a highly selective ligand for the δ-binding site. Br J Pharmacol 84: 927–932PubMedGoogle Scholar
  25. Cox BM, Chavkin C (1983) Comparison of dynorphin-selective kappa-receptors in mouse vas deferens and guinea-pig ileum. Mol Pharmacol 23: 36–43PubMedGoogle Scholar
  26. Delay-Goyet P, Zajac J-M, Rigaudy P, Foucaud B, Roques BP (1985) Comparative binding properties of linear and cyclic δ-selective enkephalin analogues: [3H]-[D- Thr2,Leu5]enkephalyl-Thr6 and [3H]-[D-Pen2,D-Pen5]enkephalin. FEBS Lett 183: 439–443PubMedCrossRefGoogle Scholar
  27. Delay-Goyet P, Seguin C, Gacel G, Roques BP (1988) [3H]-[D-Ser(O-tert- butyl)2,Leu5]enkephalyl–Thr6 and [3H]–[D-Ser(O-terr-butyl)2,Leu5]enkephalyl- Thr6(O-tert-butyl). Two new enkephalin analogs with both a good selectivity and a high affinity towards δ-opioid binding sites. J Biol Chem 263: 4124–4130Google Scholar
  28. Donnerer J, Oka K, Brossi A, Rice KC, Spector S (1986) Presence and formation of codeine and morphine in the rat. Proc Natl Acad Sci USA 83: 4566–4567PubMedCrossRefGoogle Scholar
  29. Donnerer J, Cardinale G, Coffey J, Lisak CA, Jardine I, Spector S (1987) Chemical characterization and regulation of endogenous morphine and codeine in the rat. J Pharmacol Exp Ther 242: 583–587PubMedGoogle Scholar
  30. Erspamer V, Melchiorri P, Falconieri-Erspamer G, Negri L, Corsi R, Severini C, Barra D, Simmaco M, Kreil G (1989) Deltorphins: a family of naturally occurring peptides with high affinity and selectivity for δ opioid binding sites. Proc Natl Acad Sci USA 86: 5188–5192PubMedCrossRefGoogle Scholar
  31. Fischli W, Goldstein A, Hunkapillar MV, Hood LE (1982) Isolation and amino acid sequence analysis of a 4000 dalton dynorphin from porcine pituitary. Proc Natl Acad Sci USA 79: 5435–5437PubMedCrossRefGoogle Scholar
  32. Gacel G, Fournie–Zaluski MC, Roques BP (1980) Tyr-D-Ser-Gly-Phe-Leu-Thr, a highly selective ligand for δ-opiate receptors. FEBS Lett 118: 245–247PubMedCrossRefGoogle Scholar
  33. Gacel G, Dauge V, Breuze P, Delay-Goyet P, Roques BP (1988) Development of conformationally constrained linear peptides exhibiting a high affinity and pronounced selectivity for δ-opioid receptors. J Med Chem 31: 1891–1897PubMedCrossRefGoogle Scholar
  34. Gairin JE, Jomary C, Prodayrol L, Cros J, Meunier J–C (1986) 125I–DPDYN, monoiodo[D–Pro10]dynorphin(l–ll): a highly radioactive and selective probe for the study of kappa opioid receptors. Biochem Biophys Res Commun 134:1142– 1150Google Scholar
  35. Gillan MGC, Kosterlitz HW, Magnan J (1981) Unexpected antagonism in the rat vas deferens by benzomorphans which are agonists in other pharmacological tests. Br J Pharmacol 72: 13–15PubMedGoogle Scholar
  36. Goldstein A (1987) Binding selectivity profiles for ligands of multiple receptor types: focus on opioid receptors. Trends Neurosci 8: 456–459Google Scholar
  37. Goldstein A, James IF (1984) Site-directed alkylation of multiple opioid receptors: II. Pharmacological selectivity. Mol Pharmacol 25: 343–348Google Scholar
  38. Goldstein A, Naidu A (1989) Multiple opioid receptors: ligand selectivity profiles and binding site signatures. Mol Pharmacol 36: 265–272PubMedGoogle Scholar
  39. Gubler U, Seeberg PH, Hoffman BJ, Gage LP, Udenfriend S (1982) Molecular cloning establishes proenkephalin as precursor of enkephalin-containing peptides. Nature 295: 206–208PubMedCrossRefGoogle Scholar
  40. Hambrook JM, Morgan BA, Ranee MJ, Smith CFC (1976) Mode of deactivation of the enkephalins by rat and human plasma and rat brain homogenates. Nature 262: 782–783PubMedCrossRefGoogle Scholar
  41. Handa BK, Lane AC, Lord J AH, Morgan BA, Ranee MJ, Smith CFC (1981) Analogues of β-LPH61–64 possessing selective agonist activity at μ-opiate receptors. Eur J Pharmacol 70: 531–540PubMedCrossRefGoogle Scholar
  42. Hawkins KN, Morelli M, Gulya K, Chang K-J, Yamamura HI (1987) Autoradiographic localization of [3H] [MePhe3,D-Pro4] morphiceptin ([3H]PL O17) to μ-opioid receptors in rat brain. Eur J Pharmacol 133: 351–352PubMedCrossRefGoogle Scholar
  43. Hawkins KN, Knapp RJ, Lui GK, Gulya K, Kazmierski W, Wan Y-P, Pelto JT, Hruby VJ, Yamamura HI (1989) [3H]-fD-Phe-Cys-Tyr-D-TrP-OrN-Thr-PeN-Thr- NH2] ([3H]CTOP), a potent and highly selective peptide for [i opioid receptors in rat brain. J Pharmacol Exp Ther 248:73–80Google Scholar
  44. Hayes AG, Sheehan MJ, Tyers MB (1985) Determination of the receptor selectivity of opioid agonists in the guinea-pig ileum and mouse vas deferens using β-FNA. Br J Pharmacol 86: 899–904PubMedGoogle Scholar
  45. Henschen A, Lottspeich F, Brantl V, Teschemacher H (1979) Novel opioid peptides derived from casein (β-casomorphins): II. Structure of active components from bovine casein peptone. Hoppe-Seyler’s Z Physiol Chem 360: 1217–1224Google Scholar
  46. Höllt V, Sanchez-Blasquez P, Garzon J (1985) Multiple opioid ligands and receptors in the control of nociception. Philos Trans R Soc Lond [Biol] 308: 299–310CrossRefGoogle Scholar
  47. Hughes J, Kosterlitz HW, Leslie FM (1975a) Effect of morphine on adrenergic transmission in the mouse vas deferens. Assessment of agonist and antagonist potencies of narcotic analgesics. Br J Pharmacol 53: 371–381Google Scholar
  48. Hughes J, Smith TW, Kosterlitz HW, Fothergill LA, Morgan BA, Morris HR (1975b) Identification of two related peptides from the brain with potent opiate agonist activity. Nature 258: 577–579PubMedCrossRefGoogle Scholar
  49. Hunter JC, Leighton GE, Meecham KG, Boyle S, Horwell DC, Rees DC, Hughes J (1990) CI–977, a novel and selective agonist for the ĸ-opioid receptor. Br J Pharmacol 101: 183–189PubMedGoogle Scholar
  50. Hurlbut DE, Evans CJ, Barchas JD, Leslie FM (1987) Pharmacological properties of a proenkephalin A-derived peptide: BAM 18. Eur J Pharmacol 138: 359–366PubMedCrossRefGoogle Scholar
  51. Hutchinson M, Kosterlitz HW, Leslie FM, Waterfield AA, Terenius L (1975) Assessment in the guinea-pig ileum and mouse vas deferens of benzomorphans which have strong antinociceptive activity but do not substitute for morphine in the dependent monkey. Br J Pharmacol 55: 541–546PubMedGoogle Scholar
  52. Jin W, Chen X, Chi Z (1987) The choice of opioid receptor subtype in isolated preparations by ohmefentanyl. Sci Sin 30: 176–181Google Scholar
  53. Kakidani H, Furutani Y, Takahashi H, Noda M, Morimoto Y, Hirose T, Asai M, Inayama S, Nakanishi S, Numa S (1982) Cloning and sequence analysis of cDNA for porcine P-neo-endorphin/dynorphin precursor. Nature 298: 245–249PubMedCrossRefGoogle Scholar
  54. Kazmierski W, Wire WS, Lui GK, Knapp RJ, Shook JE, Burks TF, Yamamura H, Hruby VJ (1988) Design and synthesis of somatostatin analogues with topographical properties that lead to highly potent and specific μ opioid receptor antagonists with greatly reduced binding at somatostatin receptors. J Med Chem 31: 2170–2177PubMedCrossRefGoogle Scholar
  55. Kilpatrick DL, Wahlstrom A, Lahm H-W, Blacher R, Udenfriend S (1982) Rimorphin, a unique, naturally occurring [Leu]enkephalin-containing peptide found in association with dynorphin and α-neo-endorphin. Proc Natl Acad Sci USA 79: 6480–6483PubMedCrossRefGoogle Scholar
  56. Kosterlitz HW (1985) Opioid peptides and their receptors. Proc R Soc Lond [Biol] 225: 27–40CrossRefGoogle Scholar
  57. Kosterlitz HW, Paterson SJ (1981) Tyr-D-Ala-Gly-MePhe-NH(CH2)2OH is a selective ligand for the μ-opiate binding site. Br J Pharmacol 73: 299 PGoogle Scholar
  58. Kosterlitz HW, Paterson SJ (1985) Types of opioid receptors: relation to antinociception. Philos Trans R Soc Lond [Biol] 308: 291–297CrossRefGoogle Scholar
  59. Kosterlitz HW, Paterson SJ (1990) D-Phe-Cys-Tyr-D-TrP-OrN-Thr-PeN-Thr-NH2 is a highly selective μ-ligand with low in vitro antagonist activity. Br J Pharmacol 99: 291 PGoogle Scholar
  60. Kosterlitz HW, Lord J AH, Paterson SJ, Waterfield AA (1980) Effect of changes in the structure of enkephalins and of narcotic analgesic drugs on their interaction with and δ-receptors. Br J Pharmacol 68: 333–342PubMedGoogle Scholar
  61. Kosterlitz HW, Corbett AD, Paterson SJ (1990) Opioid receptors and their ligands. In: Harris LS (ed) Problems of drug dependence 1989. Natl Inst Drug Abuse Res Monogr Ser 95: 159–166Google Scholar
  62. Kramer TH, Shook JE, Kazmierski W, Ayres EA, Wire WS, Hruby VJ, Burks TF (1989) Novel peptidic mu opioid antagonists: pharmacologic characterization in vitro and in vivo. J Pharmacol Exp Ther 249: 544–551PubMedGoogle Scholar
  63. Kreil G, Barra D, Simmaco M, Erspamer V, Falconieri–Erspamer G, Negri L, Severini C, Corsi R, Melchiorri P (1989) Deltorphin, a novel amphibian skin peptide with high selectivity and affinity for δ opioid receptors. Eur J Pharmacol 162: 123–128PubMedCrossRefGoogle Scholar
  64. Lahti RA, Mickelson MM, McCall JM, Von Voigtlander (1985) [3H] U-69593, a highly selective ligand for the opioid ĸ-receptor. Eur J Pharmacol 109:281–284Google Scholar
  65. Lazarus LH, Wilson WE, de Castiglione R, Guglietta A (1989) Dermorphin gene sequence peptide with high affinity and selectivity for 5 opioid receptors. J Biol Chem 264: 3047Google Scholar
  66. Lemaire S, Magnan J, Regoli D (1978) Rat vas deferens: a specific bioassay for endogenous opioid peptides. Br J Pharmacol 64: 327–329PubMedGoogle Scholar
  67. Leslie FM (1987) Methods used in the study of opioids. Pharmacol Rev 39: 197–249PubMedGoogle Scholar
  68. Leslie FM, Chavkin C, Cox BM (1980) Opioid binding properties of brain and peripheral tissues: evidence for heterogeneity in opioid ligand binding sites. J Pharmacol Exp Ther 214: 395–402PubMedGoogle Scholar
  69. Liao CS, Day AR, Freer RJ (1981) Evidence for a single opioid receptor type in the field stimulated rat vas deferens. Life Sci 29: 2617–2622PubMedCrossRefGoogle Scholar
  70. Lord J AH, Waterfield AA, Hughes J, Kosterlitz HW (1977) Endogenous opioid peptides: multiple agonists and receptors. Nature 267: 495–499PubMedCrossRefGoogle Scholar
  71. Magnan J, Paterson SJ, Tavani A, Kosterlitz HW (1982) The binding spectrum of narcotic analgesic drugs with different agonist and antagonist properties. Naunyn Schmiedebergs Arch Pharmacol 319: 197–205PubMedCrossRefGoogle Scholar
  72. Mains RE, Eipper BA, Ling N (1977) Common precursor to corticotropins and endorphins. Proc Natl Acad Sci USA 74: 3014–3018PubMedCrossRefGoogle Scholar
  73. McKnight AT, Corbett AD, Paterson SJ, Magnan J, Kosterlitz HW (1982) Comparison of in vitro potencies in pharmacological and binding assays after inhibition of peptidases reveals that dynorphin (1–9) is a potent ĸ-agonist. Life Sci 31: 1725–1728PubMedCrossRefGoogle Scholar
  74. McKnight AT, Corbett AD, Kosterlitz HW (1983) Increase in potencies of opioid peptides after peptidase inhibition. Eur J Pharmacol 86: 393–402PubMedCrossRefGoogle Scholar
  75. McKnight AT, Corbett AD, Marcoli M, Kosterlitz HW (1984) Hamster vas deferens contains δ-opioid receptors. Neuropeptides 5: 97–100PubMedCrossRefGoogle Scholar
  76. McKnight AT, Corbett AD, Marcoli M, Kosterlitz HW (1985) The opioid receptors in the hamster vas deferens are of the δ-type. Neuropharmacology 24: 1011–1017PubMedCrossRefGoogle Scholar
  77. Meecham KJ, Boyle SJ, Hunter JC, Hughes J (1989) An in vitro profile of activity for the (+) and (-) enantiomers of spiradoline and PD117302. Eur J Pharmacol 173: 151–157PubMedCrossRefGoogle Scholar
  78. Miller L, Shaw JS (1985) Characterization of the δ-opioid receptor on the hamster vas deferens. Neuropeptides 6: 531–536PubMedCrossRefGoogle Scholar
  79. Miller L, Shaw JS, Whiting EM (1986) The contribution of intrinsic activity to the actions of opioids in vitro. Br J Pharmacol 87: 595–601PubMedGoogle Scholar
  80. Mor A, Delfour A, Sagan S, Amiche M, Pradelles P, Rossier J, Nicolas P (1989) Isolation of dermenkephalin from amphibian skin, a high affinity δ-selective opioid heptapeptide containing a D-amino acid residue. FEBS Lett 255:269–274Google Scholar
  81. Mosberg HI, Hurst R, Hruby VJ, Gee K, Yamamura HI, Galligan JJ, Burks TF (1983) Bis-penicillamine enkephalins possess highly improved specificity towards δ opioid receptors. Proc Natl Acad Sci USA 80: 5871–5874PubMedCrossRefGoogle Scholar
  82. Nakanishi S, Inoue A, Kita T, Nakamura M, Chang ACY, Cohen SM, Numa S (1979) Nucleotide sequence of cloned cDNA for bovine corticotropin-P- lipotropin precursor. Nature 278: 423–427PubMedCrossRefGoogle Scholar
  83. Noda M, Furutani Y, Takahashi H, Toyosato M, Hirose T, Inayama S, Nakanishi S, Numa S (1982) Cloning and sequence analysis of cDNA for bovine preproenkephalin. Nature 295: 202–206PubMedCrossRefGoogle Scholar
  84. Oka T, Negishi K, Suda M, Matsumiya T, Inazu T, Masaaki U (1981) Rabbit vas deferens: a specific bioassay for opioid K-recptor agonists. Eur J Pharmacol 73: 235–236PubMedCrossRefGoogle Scholar
  85. Paterson SJ (1986) Multiple opioid binding sites and their ligands. PhD thesis, University of Aberdeen Paterson SJ (1991) Opioid receptors. In: Stone TW (ed) Aspects of Synaptic Transmission: LTP, galanin, opioids, autonomic and 5-HT, vol 1. Taylor and Francis, London, pp 117–140Google Scholar
  86. Paterson SJ, Robson LE, Kosterlitz HW (1984) Opioid receptors. In: Udenfriend S, Meienhoffer J (eds) The peptides: analysis, synthesis and biology, vol 6. Academic, London, pp 147–189Google Scholar
  87. Pelton JT, Gulya K, Hruby VJ, Duckies SJ, Yamamura HI (1986) Somatostatin analogs with affinity for opiate receptors in rat brain binding assays. Peptides 6 (Suppl 1): 159–163Google Scholar
  88. Porini G, Petrillo P, Colombo M, Tavani A (1990) In vitro binding profile of cyprodime, a reported mu-opioid antagonist. In: van Ree JM, Mulder AH, Wiegant VM, van Wimersma Greidanus TB (eds) New leads in opioid research. Excerpta Medica, Amsterdam, pp 225–227Google Scholar
  89. Portoghese PS, Takemori AE (1985) TEN A, a selective kappa opioid receptor antagonist. Life Sci 36: 810–805CrossRefGoogle Scholar
  90. Portoghese PS, Larson DL, Jiang JB, Caruso TP, Takemori AE (1979) Synthesis and pharmacological characterization of an alkylating analogue (chlornaltrexamine) of naltrexone with ultra-long lasting narcotic antagonist properties. J Med Chem 22: 168–173PubMedCrossRefGoogle Scholar
  91. Portoghese PS, Larson DL, Sayre DS, Fries DS, Takemori AE (1980) A novel opioid receptor site directed alkylating agent with irreversible narcotic antagonistic and reversible agonistic activities. J Med Chem 26: 1341–1343CrossRefGoogle Scholar
  92. Portoghese PS, Lipkowski AW, Takemori AE (1987) Binaltorphimine and nor- binaltorphimine, potent and selective ĸ-opioid receptor antagonists. Life Sci 40: 1287–1292PubMedCrossRefGoogle Scholar
  93. Portoghese PS, Sultana M, Takemori AE (1988) Naltrindole, a highly selective and potent non-peptide δ-opioid receptor antagonist. Eur J Pharmacol 146: 185–186PubMedCrossRefGoogle Scholar
  94. Rezvani A, Höllt V, Way EL (1983) ĸ-Receptor activities of three opioid peptide families. Life Sci 33 (Suppl l):271–274Google Scholar
  95. Roberts JL, Herbert E (1977a) Characterization of a common precursor to corticotropin and β-lipotropin: cell-free synthesis of the precursor and identification of corticotropin peptides in the molecule. Proc Natl Acad Sci USA 74: 4826–4830PubMedCrossRefGoogle Scholar
  96. Roberts JL, Herbert E (1977b) Characterization of a common precursor to corticotropin and β-lipotropin: identification of P-lipotropin peptides and their arrangement relative to corticotropin in the precursor synthesized in a cell-free system. Proc Natl Acad Sci USA 74: 5300–5304PubMedCrossRefGoogle Scholar
  97. Römer D, Buscher HH, Hill RC, Pless J, Bauer W, Cardinaux F, Closse A, Hauser D, Huguenin R (1977) A synthetic enkephalin analogue with prolonged parenteral and oral analgesic activity. Nature 268: 547–549CrossRefGoogle Scholar
  98. Römer D, Buscher H, Hill RC, Maurer R, Petcher TJ, Welle HB, Bakel CCK, Akkerman AM (1980) Bremazocine: a potent, long-acting opiate kappa agonist. Life Sci 27: 971–978PubMedCrossRefGoogle Scholar
  99. Römer D, Buscher H, Hill RC, Maurer R, Petcher TJ, Zeugner H, Benson W, Finner E, Milkowski W, Thies PW (1982) An opioid benzodiazepine. Nature 298: 759–760PubMedCrossRefGoogle Scholar
  100. Sagan S, Corbett AD, Amiche M, Delfour A, Nicolas P, Kosterlitz HW (1991) Opioid activity of dermenkephalin analogues in the guinea-pig myenteric plexus and hamster vas deferens. Br J Pharmacol 104: 428–432PubMedGoogle Scholar
  101. Schiller PW, Nguyen TM-D, Maziak LA, Wilkes BC, Lemieux C (1987) Structure- activity relationships of cyclic opioid peptide analogues containing phenylalanine residue in the 3–position. J Med Chem 30: 2094–2099PubMedCrossRefGoogle Scholar
  102. Schiller PW, Nguyen TM-D, Chung NN, Lemieux C (1989) Dermorphin analogues carrying an increased positive charge in their “message”1 domain display extremely high μ-opioid receptor selectivity. J Med Chem 32: 698–703PubMedCrossRefGoogle Scholar
  103. Schmidhammer H, Smith CFC (1989) A simple and efficient method for the preparation of binaltorphimine and derivatives and determination of their K- opioid antagonist selectivity. Helv Chim Acta 72: 675–677CrossRefGoogle Scholar
  104. Schmidhammer H, Burkard WP, EggsteiN-Aeppli L, Smith CFC (1989) Synthesis and biological evaluation of 14-alkoxymorphinans: 2. (-)-N- (cyclopropylmethyl)-4, 14–dimethoxymorphinaN-6-one, a selective μ opioid receptor antagonist. J Med Chem 32: 418–421PubMedCrossRefGoogle Scholar
  105. Schmidt WK, Tam SW, Shotzberger GS, Smith DH, Clark R, Vernier VG (1985) Nalbuphine. Drug Alcohol Depend 14: 339–362CrossRefGoogle Scholar
  106. Schulz R, Faase E, Wüster M, Herz A (1979) Selective receptors for P-endorphin in the rat vas deferens. Life Sci 24: 843–849PubMedCrossRefGoogle Scholar
  107. Schulz R, Wüster M, Herz A (1981) Pharmacological characterization of the ε- receptor. J Pharmacol Exp Ther 216: 604–606PubMedGoogle Scholar
  108. Shaw JS, Miller L, Turnbull MJ, Gormley JJ, Morley JS (1982) Selective antagonists at the opiate delta-receptor. Life Sci 31: 1259–1262PubMedCrossRefGoogle Scholar
  109. Sheehan MJ, Hayes AG, Tyers MB (1986) Pharmacology of δ-opioid receptors in the hamster vas deferens. Eur J Pharmacol 130: 57–64PubMedCrossRefGoogle Scholar
  110. Sheehan MJ, Hayes AG, Tyers MB (1988) Lack of evidence for ε-opioid receptors in the rat vas deferens. Eur J Pharmacol 154: 237–245PubMedCrossRefGoogle Scholar
  111. Shi P, Niu J, Wu S, Zou G (1981) Enkephalin analogs with extremely high affinity for δ-receptor. Kexue Tongbao 26: 750–752Google Scholar
  112. Shimohigashi Y, Costa T, Matsuura S, Chen H-C, Rodbard D (1982) Dimeric enkephalins display affinity and selectivity for the delta opiate receptor. Mol Pharmacol 21: 558–563PubMedGoogle Scholar
  113. Shimohigashi Y, Costa T, Pfeiffer A, Herz A, Kimura H, Stammer CH (1987) E Phe4–enkephalin analogs. Delta receptors in rat brain are different from those in mouse vas deferens. FEBS Lett 222: 71–74Google Scholar
  114. Shimohigashi Y, Takano Y, Kamiya H, Costa T, Herz A, Stammer CH (1988) A highly selective ligand for brain δ opiate receptors, a E Phe4-enkephalin analog, suppresses μ receptor-mediated thermal analgesia by morphine. FEBS Lett 233: 289–229PubMedCrossRefGoogle Scholar
  115. Smith CFC (1987) 16-Me-Cyprenorphine (RX 8008M): a potent opioid antagonist with some δ selectivity. Life Sci 40:267–274Google Scholar
  116. Takemori AE, Begonia YH, Naeseth JS, Portoghese PS (1988) Norbinaltorphimine, a highly selective kappa-opioid antagonist in analgesia and receptor binding assays. J Pharmacol Exp Ther 246: 255–258PubMedGoogle Scholar
  117. Toth G, Kramer TH, Knapp R, Lui G, Davis P, Burks TF, Yamamura HI, Hruby VJ (1989) [D-Pen2,D-Pen5]enkephalin analogues with increased affinity and selectivity for δ-opioid receptors. J Med Chem 33:249–253Google Scholar
  118. Traynor JR, Corbett AD, Kosterlitz HW (1987) Diprenorphine has agonist activity at opioid ĸ-receptors in the myenteric plexus of the guinea-pig ileum. Eur J Pharmacol 137: 85–89PubMedCrossRefGoogle Scholar
  119. Vaughn LK, Knapp RJ, Toth G, Wan Y-P, Hruby VJ, Yamamura HI (1989) A high affinity, highly selective ligand for the delta opioid receptor: [3H]-[D-Pen2,/pC1- Phe4,D-Pen5]enkephalin. Life Sci 45: 1001–1008PubMedCrossRefGoogle Scholar
  120. Vaughn LK, Wire SW, Davis P, Shimohigashi Y, Toth G, Knapp RJ, Hruby VJ, Burks TF, Yamamura HI (1990) Differentiation between rat brain and mouse vas deferens δ-opioid receptors. Eur J Pharmacol 177: 99–101PubMedCrossRefGoogle Scholar
  121. Von Voigtlander PF, Lahti RA, Ludens JH (1983) U-50,488: a selective and structurally novel non-mu (kappa) opioid agonist. J Pharmacol Exp Ther 224:7–12Google Scholar
  122. Weber E, Esch FS, Bohlen P, Paterson SJ, Corbett AD, McKnight AT, Kosterlitz HW, Barchas JD, Evans CJ (1983) Metorphamide: isolation, structure, and biological activity of an amidated opioid octapeptide from bovine brain. Proc Natl Acad Sci USA 80: 7362–7366PubMedCrossRefGoogle Scholar
  123. Weitz CJ, Lowney LI, Faull KF, Feistner G, Goldstein A (1986) Morphine and codeine from mammalian brain. Proc Natl Acad Sci USA 83: 9784–9788PubMedCrossRefGoogle Scholar
  124. Weitz CJ, Faull KF, Goldstein A (1987) Synthesis of the skeleton of the morphine molecule by mammalian liver. Nature 330: 674–677PubMedCrossRefGoogle Scholar
  125. Wüster M, Schulz R, Herz A (1979) Selectivity of opioids towards the μ-, and δ-opiate receptors. Neurosci Lett 15: 193–198PubMedCrossRefGoogle Scholar
  126. Yeadon M, Kitchen I (1988) Comparative binding of μ and δ selective ligands in whole brain and pons/medulla from rat: affinity profiles of fentanyl derivatives. Neuropharmacology 27: 345–348PubMedCrossRefGoogle Scholar
  127. Zajac JM, Gacel G, Petit F, Dodey P, Rossignol P, Roques B (1983) Deltakephalin, Tyr-D-Thr-Gly-Phe-Leu-Thr: a new highly potent and fully specific agonist for opiate δ-receptors. Biochem Biophys Res Commun 111: 390–397PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • A. D. Corbett
  • S. J. Paterson
  • H. W. Kosterlitz

There are no affiliations available

Personalised recommendations