Advertisement

Positive Automata Networks

  • E. Goles
Conference paper
Part of the NATO ASI Series book series (volume 20)

Abstract

Automata networks have been introduced as a modeling tool in several fields: neurophysiology, Fogelman(1985), Hopfield(1982), Mc Culloch(1943), selfreproducing cellular arrays, Von Neumann(1966), group dynamics, Goles(1985a) and, more recently, simulations on spin glass structures and other physical systems, Demongeot, Goles, Tchuente(1985), Fogelman(1983, 1985), Goles (1985a). In most of those applications, the study of the automata dynamics was made by computer simulations and the theoretical results were very few. This last aspect is due, principally, to the hard combinatorial analysis which is needed in order to handle the discrete nature of the problem: finite set of states, discrete cellular array, discrete time evolution, etc.

Keywords

Lyapunov Function Cellular Automaton Positive Function Spin Glass Threshold Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BERLEKAMP E.R., CONWAY J.H., GUY R.K. (1982):Winnings Ways, vol. 2, chap. 25, Academic PressGoogle Scholar
  2. DEMONGEOT J., GOLES E., TCHUENTE M. (1985): Cellular Automata and Dynamical Systems, Proc. Workshop Luminy, Sept. 1983, Academic PresszbMATHGoogle Scholar
  3. FOGELMAN F. (1985): Contribution à une théorie du calcul sur réseaux, Thèse d’Etat, Université de Grenoble, FranceGoogle Scholar
  4. FOGELMAN F., GOLES E., WEISBUCH G. (1983): Transient length in sequential iteration of threshold functions, Disc. Applied Maths., Vol. 6Google Scholar
  5. GOLES E., OLIVOS J. (1981): The convergence of symmetric threshold automata, Inf. and Control, Vol. 51Google Scholar
  6. GOLES E., TCHUENTE M. (1983): Iterative behaviour of generalized majority functions, Math. Soc. Sciences, Vol. 4Google Scholar
  7. GOLES E. (1985a): Comportement Dynamique de Réseaux d’Automates, Thèse d’Etat, Université de Grenoble, FranceGoogle Scholar
  8. GOLES E. (1985b): Dynamics on positive automata networks, Theor. Comp. Sciences, to appearGoogle Scholar
  9. GOLES E., MARTINEZ S. (1985c): Dynamics and properties on positive functions, Res. Report, Dept. Matematicas, U. ChileGoogle Scholar
  10. HOPFIELD J.J. (1982): Neural networks and physical systems with emergent collective computational abilities, Proc. Nat. Acad. Sc. USA, 79, pp 2554–2558CrossRefMathSciNetGoogle Scholar
  11. MC CULLOCH W., PITTS W. (1943): A logical calculus of the ideas immanent in nervous activity, Bull. Math. Biophysics, Vol 5Google Scholar
  12. POLJAK S. (1983): On periodical behaviour in societies with symmetric influences, Combinatorica, Vol. 3, 1, 119–121CrossRefzbMATHMathSciNetGoogle Scholar
  13. POLJAK S., TURZIK D. (1984): On pre-period of discrete influence systems, Res. Report, Dept. of Systems Ing., U. CzechoslovakiaGoogle Scholar
  14. TCHUENTE M. (1982): Contribution à l’étude des méthodes de calcul pour des systémes de type coopératif, Thèse d’Etat, Université de Grenoble, FranceGoogle Scholar
  15. ULAM S.M. (1970): Some mathematical problems connected with patterns of growth of figures, Essays on Cellular Automata, Univ. of Illinois PressGoogle Scholar
  16. VON NEUMANN J. (1966): Theory of self-reproducing automata, BURKS W. ed., Univ. Illinois PressGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • E. Goles
    • 1
    • 2
  1. 1.Dept. MatematicasEsc. Ingenieria, U. de ChileSantiagoChile
  2. 2.TIM3, CNRSChile

Personalised recommendations