Symbolic Computation Methods for Some Spin Glasses Problems

  • Bernard Lacolle
Conference paper
Part of the NATO ASI Series book series (volume 20)


The purpose of this paper is the computation of exact expressions (symbolic expressions) of two fundamental functions used in Statistical Physics. In the first part we study the partition functions of finite two-dimensional and three-dimensional Ising models. These partition functions can be expressed with polynomials and we want to compute all the coefficients of these polynomials exactly. In the second part we deal with the free energy of some regular two-dimensional Ising models. We write these functions in the form of double integrals and we carry out the calculation of the kernels of these integrals.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Y.ABE, S.KATSURA (1976): Phase transition and distribution of zeros of the partition functions for an antiferomagnetic Ising model and for a hard core lattice gas. J.Phys.Soc. Japan, Vol. 40,642CrossRefGoogle Scholar
  2. A.V.AHO, J.E.HOPCROFT, J.D.ULLMANN (1974): The design and analysis of computer algorithms. Addison WesleyzbMATHGoogle Scholar
  3. F.BARAHONA (1980): Application de l’optimisation combinatoire à certains problèmes de verres de spins: complexité et simulation. Thèse Docteur Ingénieur GrenobleGoogle Scholar
  4. H.BOERNER (1970): Representations of groups with special considerations for the needs of modern physics. North Holland Publishing CompanyGoogle Scholar
  5. V.V.BRYSKIN, A.Y.GOLTSEV, E.E.KUDINOV (1980): Some exact results for the 2D Ising model with regular disposition of frustated squares. J. Phys. C: Solid State Phys., 13Google Scholar
  6. A.C.HEARN (1983): Reduce user’s manual The Rand Corporation Santa Monica April 1983Google Scholar
  7. P.HOEVER, W.F.WOLFF, J.ZITTARTZ (1981): Random layered frustration models Z.Physik B, Condensed matter 41Google Scholar
  8. S.KATSURA, Y.ABE, M.YAMAMOTO (1971): Distribution of zeros of the partition functions of the Ising model. J.Phys.Soc. Japan, Vol. 30,347CrossRefGoogle Scholar
  9. B.KAUFMAN (1949): Crystal Statistics II. Partition function evaluated by spinor analysis. Phys.rev. Vol 76, Number 8Google Scholar
  10. H.AKRAMERS, G.H.WANNIER (1941): Statistics of the two-dimensional ferromagnet Part I. Phys.Rev. 60Google Scholar
  11. B.LACOLLE (1984): Sur certaines méthodes de calcul de la Physique Statistique. Thèse Mathématiques Universite De GrenobleGoogle Scholar
  12. L.LONGA, A.M.OLES (1980): Rigourous Properties of the two-dimensional Ising model with periodically distibued frustration. J.Phys. A 13Google Scholar
  13. S.ONO, Y.KARAKI, M.SUZUKI, C.KAWABATA (1968): Statistical thermodynamics of finite Ising Model I. J. Phys. Soc. Japan Vol.25 N° 1Google Scholar
  14. L.ONSAGER (1944): Cristal Statistics I. A two-dimensional model with an order-disorder transition. Phys.rev. 65, Number 3–4Google Scholar
  15. R.B. PEARSON (1982):The partition function of the Ising Model on the periodic 4×4×4 lattice Phys.rev. B (3),26Google Scholar
  16. M.SUZUKI, C.KAWABATA, S.ONO, Y.KARAKI, M.IKEDA (1970): Statistical thermodynamics of finite Ising Model II.J. Phys. Soc. Japan, Vol.29, N° 4Google Scholar
  17. J.VILLAIN (1977): Spin glass with non random interactions J. Phys. C: Solid State Phys., Vol. 10, N° 4Google Scholar
  18. W.F. WOLFF, J. ZITTARTZ (1983): Spin glasses and frustration models: Analytic results. Lecture Notes in Physics 192Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Bernard Lacolle
    • 1
  1. 1.Laboratoire TIM3St Martin d’Hères CédexFrance

Personalised recommendations