Recurrent Collateral Inhibition Simulated in a Simple Neuronal Automata Assembly

  • H. Axelrad
  • C. Bernard
  • B. Giraud
  • M. E. Marc
Conference paper
Part of the NATO ASI Series book series (volume 20)


One of the central problems that has to be resolved in view of a better understanding of the functioning of CNS structures is that of the dynamic properties of it’s constituent neuronal nets. It clearly appears, indeed, to experimental as well as theoretical neurobiologists that albeit the wealth of knowledge accumulated on the properties of neurons at the molecular, membrane and cellular levels a great degree of cooperativity is present between neuronal elements and that it is therefore the collective properties of groups of neurons inside the structure that must be unveiled. This has at least two important consequences. The first is that it may be difficult to use general mathematical “models” to derive precise existing properties. Indeed there does not exist such a thing as a “general” CNS structure but on the contrary very differently organized morphological structures. The second is that if one takes in account the ultimate scope of the CNS, which is certainely related to an “adequate behavior” of the animal in its environment, then the temporal constraints imposed on the systems must surely be stressed.


Purkinje Cell Informational Content Collective Property Restricted Problem Recurrent Collateral 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    S. R. CAJAL, Histologie du système nerveux de l’Homme et des Vertébrés, t.II, 1911, Maloine.Google Scholar
  2. (2).
    J. C. ECCLES, M. ITO & J. SZENTAGOTHAI, The cerebellum as a neuronal machine, 1967, Springer.Google Scholar
  3. (3).
    S. L. PALAY & V. CHAN PALAY, Cerebellum Cortex, 1974, Springer.CrossRefGoogle Scholar
  4. (4).
    H. AXELRAD, C. BERNARD, B. GIRAUD & M.E. MARC, C. R. Acad. Sci., 1985 301: 465–470.Google Scholar
  5. (5).
    B. GIRAUD, C. BERNARD & H. AXELRAD, C. R. Acad. Sci., 1985, 301: 565–570.Google Scholar
  6. (6).
    E. YERAMIAN, Thèse de DDI, Ecole Centrale, 1985.Google Scholar
  7. (7).
    V. BRAITENBERG & N. ONESTO, in Proc. 1st Int. Conf. Med. Cybernet, 1961 pp. 1–19, Naples: Giannini.Google Scholar
  8. (8).
    D. MARR, J. Physiol., 202, 1969, pp. 437–470.Google Scholar
  9. (9).
    J. S. ALBUS, Math. Biosci., 10, 1971, pp. 25–61.CrossRefGoogle Scholar
  10. (10).
    A. PELLIONISZ & R. LLINAS, Neuroscience, 4, 1979, pp. 323–348.CrossRefGoogle Scholar
  11. (11).
    M. FUJITA, Biol. Cybern., 45, 1982, pp. 195–206.CrossRefzbMATHGoogle Scholar
  12. (12).
    W. S. Mc CULLOCH & W. H. PITTS, Bull. Math. Biophis., 1943, 5: 115–137.CrossRefMathSciNetGoogle Scholar
  13. (13).
    S. WOLFRAM, Rev. Mod. Phys., 55, 1983, pp. 601–644.CrossRefzbMATHMathSciNetGoogle Scholar
  14. (14).
    S. AMARI & M.A. ARBIB, eds, Competition and Cooperation in neural nets, 1982, Springer.zbMATHGoogle Scholar
  15. (15).
    J.J. HOPFIELD, Proc. Natl. Acad. Sci. USA, 79, 1982, pp. 2554–2558.CrossRefMathSciNetGoogle Scholar
  16. (16).
    P. PERETTO, Biol. Cybern., 50, 1984, pp. 51–62.CrossRefzbMATHGoogle Scholar
  17. (17).
    G. L. SHAW, D. J. SILVERMAN & J. C. PEARSON, Proc. Natl. Acad. Sci. USA, 82, 1985, pp. 2364–2368.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • H. Axelrad
    • 1
  • C. Bernard
    • 1
  • B. Giraud
    • 2
  • M. E. Marc
    • 1
  1. 1.Lab. PhysiologieCHU PitiéParis 13France
  2. 2.Dept. Physique ThéoriqueCEASaclayFrance

Personalised recommendations