The Hydrodynamic Efficiency of Wave-Energy Devices

  • D. V. Evans
Conference paper
Part of the International Union of Theoretical and Applied Mechanics book series (IUTAM)


A description is given of theories leading to expressions for the mean power which can be extracted by one or more devices absorbing energy from a long-crested monochromatic wave. Extensions to constrained motions and various approximate methods are described and comparisons with more accurate numerical methods or experimental results made.


Wave Energy Exciting Force Motion Constraint Surface Pressure Distribution Oscillate Water Column 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    McCormick, M.E.: Analysis of a wave energy conversion buoy. J. Hydronautics 8 (1974) 77–82.CrossRefGoogle Scholar
  2. 2.
    Salter, S.H.: Wave power. Nature 249 (1974) 220–84.Google Scholar
  3. 3.
    Pierson, W.S.; Moskowitz, L.: A proposed spectral form for fully developed wind seas based on the similarity theory of S.A. Kitaigorodski. J. Geophys. Res. 69 (1964) 581–90.Google Scholar
  4. 4.
    Cockerell, C.; Platts, M.J.; Comyns-Carr, R.: The development of the wave-contouring raft. 1978 Proc. Wave Energy Conference. London-Heathrow, H.M.S.O. London, ed. P. Quarrell.Google Scholar
  5. 5.
    Hagen, G.: U.S. patent application No.4077213, Official Gazette, U.S. Patent and Trademark Office, March 7, 1978, filed Feb. 13, 1976.Google Scholar
  6. 6.
    Masuda, Y.: Experimental full scale result of wave power machine KAIMEI in 1978. Proc. First Symp. on wave energy utilisation, Gothenburg, Sweden 1979.Google Scholar
  7. 7.
    Faines, J.; McIver, P.: Wave interaction with oscillating bodies and water columns. Paper presented at this Symposium 1985.Google Scholar
  8. 8.
    Shaw, R.: Wave energy — a design challenge. Ellis Horwood, p 49, 1982.Google Scholar
  9. 9.
    Count, B.M.: The theoretical analysis of wave power devices with nonlinear mechanical conditioning. CEGB Marchwood Rep.No.R/M/N1008, 1978.Google Scholar
  10. 10.
    Sarmento, A.J.N.A.; Falcao, A.F. de O.: Wave generation by an oscillating surface-pressure and its application in wave-energy extraction. J. Fluid Mechanics 150 (1985) 467–485.CrossRefzbMATHADSGoogle Scholar
  11. 11.
    Newman, J.N.: The interaction of stationary vessels with regular waves. Proc. 11th Symp. Naval Hydrodynamics, London (1976) 491–501.Google Scholar
  12. 12.
    Mei, C.E.: Power extraction from water waves. J. Ship Research 20 (1976) 63–66.ADSGoogle Scholar
  13. 13.
    Evans, D.V.: A theory for wave-power absorption by oscillating bodies. J. Fluid Mechanics 77 (1976) 1–25.CrossRefzbMATHADSGoogle Scholar
  14. 14.
    Count, B.M.: On the physics of absorbing energy from ocean waves. Ph.D. thesis, Dept. of Physics, University of Exeter 1982.Google Scholar
  15. 15.
    Faines, J.: Radiation impedance matrix and optimum power absorption for interacting oscillators in surface waves. Applied Ocean Research 2 (1980) 75–80.CrossRefGoogle Scholar
  16. 16.
    Evans, D.V.: Some analytic results for two and three dimensional wave energy absorbers, in Power from Sea Waves ed. B. Count, London/NY, Academic (1980) 213–250.Google Scholar
  17. 17.
    Clare, R.; Evans, D.V.; Shaw, T.L.: Harnessing sea wave energy by a submerged cylinder device. Proc. Instn. Civ. Engns. Part 2, 73 (1982) 565–585.CrossRefGoogle Scholar
  18. 18.
    Ogilvie, T.F.: First-and second-order forces on a cylinder submerged under the free surface. J. Fluid Mechanics 16 (1963) 451–72.CrossRefzbMATHADSMathSciNetGoogle Scholar
  19. 19.
    Evans, D.V.; Jeffrey, D.C.; Salter, S.H.; Taylor, J.R.M.: Submerged cylinder wave-energy device: theory and experiment. Applied Ocean Research 1 (1979) 3–12.CrossRefGoogle Scholar
  20. 20.
    Evans, D.V.: Maximum wave-power absorption under motion constraints. Applied Ocean Research 3 (1981) 200–203.CrossRefGoogle Scholar
  21. 21.
    Evans, D.V.: A comparison of the relative hydrodynamic efficiencies of attenuator and terminator wave energy devices. School of Mathematics, Univ. of Bristol, Rep.No. AM-82–05. See also Proc. 2nd Int. Symp. Wave Energy Utilisations, Trondheim, Norway (1982) 137–154.Google Scholar
  22. 22.
    Count, B.M.; Jefferys, E.R.: Wave power, the primary interface. Proc. 13th Symp. Naval Hydrodynamics, Tokyo. (1980).Google Scholar
  23. 23.
    Count, B.M.; Miyazaki, T.: Study on floating alternator wave energy devices. J. Soc. Naval Arch. Japan 155 (1984) 164–171.CrossRefGoogle Scholar
  24. 24.
    Simon, M.J.: Multiple scattering in arrays of axisymmetric wave-energy devices. Part 1. A matrix method using a plane-wave approximation. J. Fluid Mechanics 120 (1982) 1–25CrossRefzbMATHADSGoogle Scholar
  25. 25.
    Ambli, N.; Boke, K.; Malmo, O.; Reitan, A.: The Kvaerner multi-resonant OWC. Proc. 2nd Int. Symp. on Wave Energy Utilisation, Trondheim, Norway (1982) 275–297.Google Scholar
  26. 26.
    Malmo, O.; Reitan, A.: Wave-power absorption by an oscillating water column in a reflecting wall. Preprint, University of Trondheim, Norway (1984(a)).Google Scholar
  27. 27.
    Malmo, O.; Reitan, A.: Wave-power absorption by a finite row of oscillating water columns in a reflecting wall. Preprint, University of Trondheim, Norway (1984(b)).Google Scholar
  28. 28.
    Evans, D.V.: Wave-power absorption within a resonant harbour. Proc. 2nd Int. Symp. on Wave Energy Utilisation, Trondheim (1982) 371–378.Google Scholar
  29. 29.
    Evans, D.V.; Count, B.M.: Approximate impedance methods for wave-energy absorption by devices in harbours. Proc. Int. Workshop on ship and platform motions, Berkeley, Calif. U.S.A. (1983) 163–182.Google Scholar
  30. 30.
    Count, B.M.; Evans, D.V.: The influence of projecting sidewalls on the hydrodynamic performance of wave-energy devices. J. Fluid Mechanics 145 (1984) 361–376.CrossRefzbMATHADSGoogle Scholar
  31. 31.
    Count, B.M.: Theoretical hydrodynamical studies on harbour systems for wave energy absorption. Central Electricity Generating Board Rep. TPRD/M/1334/N83 (1983).Google Scholar
  32. 32.
    Noble, B.: Methods based on the Wiener-Hopf technique. Pergamon 1958.Google Scholar
  33. 33.
    Evans, D.V.: The influence of projecting sidewalls on the hydrodynamic performance of wave-energy devices. University of Bristol School of Mathematics, Rep.No. AM-83–01 (1983).Google Scholar
  34. 34.
    Srokosz, M.A.: Some relations for bodies in a canal, with an application to wave power absorption. J. Fluid Mechanics 95 (1980) 717–741.CrossRefADSMathSciNetGoogle Scholar
  35. 35.
    Evans, D.V.; McIver, P.: A hydrodynamic theory for wave-energy devices with projecting sidewalls in harbours. Proc. Ocean Space 85, Nihon University, Tokyo (1985).Google Scholar
  36. 36.
    McIver, P.; Evans, D.V.: In preparation (1985).Google Scholar
  37. 37.
    Evans, D.V.: Wave-power absorption by systems of oscillating surface pressure distributions. J. Fluid Mechanics 114 (1982) 481–499.CrossRefzbMATHADSGoogle Scholar
  38. 38.
    Evans, D.V.: Power from water waves. Ann. Rev. Fluid Mech. 13 (1981) 157–187.CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1986

Authors and Affiliations

  • D. V. Evans
    • 1
  1. 1.School of MathematicsUniversity of BristolBristolUK

Personalised recommendations