A Comparative Evaluation of Numerical Methods in Free-Surface Hydrodynamics

  • Ronald W. Yeung
Conference paper
Part of the International Union of Theoretical and Applied Mechanics book series (IUTAM)


An expository review is given on three major types of numerical methods commonly used in free-surface and body interaction problems of the deterministiccype. The general principles governing boundary-fitted coordinates are described. Formulations commonly used for finite-element type methods are explained. Boundary-integral equation methods of various forms are discussed. Special attention is paid to features of each type of methods that are efficient and potentially attractive and also to features that are known to be problematic. Various current research activities in time-dependent type solutions are briefly summarized. A novel idea involving the new concept of “shell functions” in unsteady problems is proposed. Once properly calculated, the “shell coefficients” can be used for a large number of methods and for arbitrary body geometry.


Free Surface Green Function Potential Flow Platform Motion Floating Body 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adachi, H., Ohmatsu, S. 1979. On the influence of irregular frequencies in the integral equation solutions to the time-dependent free surface problems. J. Soc. Naval Arch. Japan, 146: 127–35.Google Scholar
  2. Angell, T. S., Hsiao, G. S., Kleinman, R. E. 1983. An integral equation for the floating body problem. Proc. Int. Workshop Ship & Platform Motions, Berkeley, Calif. 443–49.Google Scholar
  3. Bai, K. J. 1972. A variational method in potential flows with a free surface. Univ. of Calif., Berkeley, College of Engrg. Rep. NA 72–2.Google Scholar
  4. Bai K. J., Yeung, R. W. 1974. Numerical solution to free-surface flow problems. Proc. 10th Symp. Naval Hydrodyn. Cambridge, Mass. 609–33.Google Scholar
  5. Baba, E. 1981. Some free-surface phenomena around ships to be challenged by numerical analysis. Proc. 3rd Int. Conf. Numer. Ship Hydrodyn. 9–26.Google Scholar
  6. Baker, G. R., Meiron, D. I., Orszag, S. A. 1981. Application 4 a generalized vortex method to nonlinear free surface flows. ‘roc. 3rd Int. Conf. Numer. Ship Hydrodyn. 179–92.Google Scholar
  7. Barnell, A. 1984. Boundary-integral methods for solving lotential flows. M.S. Thesis, Dept. Ocean Engrg. Mass Inst. of ‘ethnology.Google Scholar
  8. Berkhoff, J. C. W. 1972. Computation of combined refraction-liffraction. Proc 13th Coastal Engrg. Conf., Vancouver, Britsih:olumbia, 471–90.Google Scholar
  9. Brite, S. R., Newman, J. N., Sclavounos, P. D. 1985. A new generation of panel programs for radiation-diffraction problems. *SS ‘85, Delft, Holland.Google Scholar
  10. Burton, A. J., Miller, G. F. 1971. The application of in.egral equation methods to the numerical solution of some exteror boundary value problems. Proc. R. Soc. 5er. A., 201–10.Google Scholar
  11. Chapman, R. B. 1981. Time-domain method for computaing forces end moments acting on a three-dimensional surface-piercing ship gull with forward speed. Proc. 3rd Int. Conf. Numer. Ship lydrodyn. 237–48.Google Scholar
  12. Chan, R. K. C., Hirt, C. W. 1974. Two-dimensional calculations of the motion of floating bodies. 10th Symp. Naval lydrodyn, Cambridge, Mass. 667–82.Google Scholar
  13. Carey F. C., Oden, J. T. 1983. Finite elements: a second:ourse. New Jersey: Prentice Hall.Google Scholar
  14. Chen, H. S., Mei, C. C. 1974. Oscillation and wave forces in i man-made harbor in the open sea. Proc. 10th Symp. Naval lydrodyn. Cambridge, Mass. 573–96.Google Scholar
  15. Chenault, W. 1970. Motion of a ship at the free surface. MS:hesis. Naval Postgraduate School, Monterey, Calif.Google Scholar
  16. Daoud, N. 1975. Potential flow near to a fine ship’s bow.)ept. Naval Arch & Marine Engrg. Univ. Michigan, Rept. 177.Google Scholar
  17. Eatock Taylor. R., Zietsman. J. A comparison of localized ‘finite element formulations for two-dimensional wave diffraction Ind radiation problems. Int. J. Numer. Meth. Engrg. 17: 1335–84.Google Scholar
  18. Euvrard D., Jami, A., Lenoir, M., Martin, D. 1981 ) Recent)rogress towards optimal coupling between finite-elements and lingularity distribution procedures. Proc. 3rd Int. Conf. Numer. ihip Hydrodyn. 193–208.Google Scholar
  19. Ferdinande, V., Kritis, B. G. 1980. An economical method of 9etermining added mass and damping coefficients of axisymmetric floating bodies in oscillatory heaving motions. Int. Shipbldg.)rog. 27: (313) 231–40.Google Scholar
  20. Finkelstein, A. B. 1957. The initial problem for transient eater waves. Comm Pure Appl. Math. 10: 511–22.Google Scholar
  21. Flokstra C., Berkhoff, J. C. W. 1977. Propagation of short eaves over a shoal. Delft Hydraulic Lab. Rept. W 154-V (in)utch).Google Scholar
  22. Frank, W. 1967. Oscillation of cylinders in or below the free surface of deep fluids. Naval Ship Res. Dev. Center. Rept. 2375.Google Scholar
  23. Gallagher, R. H., Oden, J. T., Zienkiewicz, Kawai, T.. (awahara, M. 1984, ed. Finite elemets in fluids, vol 5.Google Scholar
  24. Ghia, U., Shin, C. T., Ghia, K. N. 1981. Analysis of a breaking free-surface wave using boundary-fitted coordinate for regions including reentrant boundaries. Proc. 3rd Int. Conf. lumer. Ship Hydrodyn., Paris, France, 133–46.Google Scholar
  25. Greenhow, M., Vinje, T., Brevig, P., Taylor, J. 1982. A thepretical and experimental study of the capsize of Salter’s duck in extreme waves. J. Fluid Mech. 118: 259–75.CrossRefGoogle Scholar
  26. Guo. C-L. S. 1981. Nonlinear theory of ship maneuvering. J Ship. Res. 21–43.Google Scholar
  27. Harten, A., Efrony, S. 1978. A partition technique for the solution of potential flow problems by integral equation methods. J. Comp. Phys. 27: 71–87.CrossRefzbMATHADSMathSciNetGoogle Scholar
  28. Haussling, H. J. 1982. Solution of nonlinear water wave problems using boundary-fitted coordinate systems. Numerical Grid Generation. ed. J. F. Thompson, North-Holland Publ., 385–408.Google Scholar
  29. Havelock, T. 1955. Waves due to a floating sphere making periodic heaving oscillations. Proc. Roy. Soc. London, Ser. A. 231: 602–8Google Scholar
  30. Hearn, G. E. 1977. Alternative methods of evaluating Green’s function in three-dimensional ship-wave problems. J. Ship Res. 21: 89–93.Google Scholar
  31. Hess. J. L., Smith, A. M. O. 1967. Calculation of potential flows about arbitrary bodies. Prog. in Aere. Sciences. 8:1–137. See also Hess, J. L. 1960, Douglas Aircraft Co. Rept. ES29812.Google Scholar
  32. Hogben, N., Standing, R. G. 1974. Wave loads on large bodies. Proc. Int. Symp. Dyn. Marine Vehicles & Struct., Univ. College, London, 258–77.Google Scholar
  33. Hulme, A. 1982. The wave forces acting on a floating hemisphere undergoing forced periodic oscillations. J. Fluid Mech. 121: 443–63.CrossRefzbMATHADSMathSciNetGoogle Scholar
  34. Isaacson M. de St. Q. 1982. Nonlinear-wave effects on fixed and floating bodies. J. Fluid Mech. 120: 267–81.CrossRefzbMATHADSGoogle Scholar
  35. John, F. 1982. On the motion of floating bodies, II, simple harmonic motions. Comm. Pure Appl. Math. 3: 45–101.CrossRefGoogle Scholar
  36. Jami, A., Polyzakis, M. 1981. A finite element solution of diffraction problems in unbounded domain. Comput. Meth. Appl. Mech. & Engrg. 29: 1–18.CrossRefzbMATHMathSciNetGoogle Scholar
  37. Kleinman R. E. 1982. On the mathematical theory of the motion of floating bodies. D.W. Taylor Naval Ship Res. & Dev. Ctr., Rept. 82 /074.Google Scholar
  38. Kleinman, R. E., Roach. G. F. 1974. Boundary-integral equations for the three-dimensional Helmholtz equation. SIAM Review, 16: 214–36.CrossRefzbMATHMathSciNetGoogle Scholar
  39. Kim, W. D. 1965. Oscillations of a rigid body in a free surface. J. Fluid Mech. 21: 427–51.CrossRefzbMATHADSMathSciNetGoogle Scholar
  40. Kobus. J. M. 1976. Application de la methode des singularites au probleme des flotteurs cylindriques soumis a des oscillations harmoniques forcees de faible amplitude. These (Docteuringeniere). Univ. Nantes. France.Google Scholar
  41. Lee. M. Y. 1985. Unsteady fluid-structure interaction in water of finite depth. Ph.D. thesis, Dept of Naval Arch. & Offsh. Engrg., Univ. Calif., Berkeley.Google Scholar
  42. Lebreton, J. C., Margnac, M. A. 1966. Traitement sur ordinateur de quelques problems concernant l’action de la houle sur corps flottants en theorie bidimensionelle. Bull. Centre Res. D’essais de Chatu.Google Scholar
  43. Lin, W. M., Newman, J. N., Yue, D. K-P. 1984. Nonlinear forced motions of floating bodies. Proc. 15th Symp. Naval Hydrodyn., 33–47.Google Scholar
  44. Longuet-Higgins M. S., Cokelet, E. D. 1976. The deformation of steep surface waves on water. I. A numerical method of computation. Proc. R. Soc. London Ser. A 350: 1–26.CrossRefzbMATHADSMathSciNetGoogle Scholar
  45. Lenoir, M., Jami, A. 1978. A variational formulation for exterior problems in linear hydrodynamics. Comp. Meth. Appl Mech Engrg. 16: 341–59.CrossRefzbMATHGoogle Scholar
  46. Martin, P. A. 1981. On the null-field equations for water-:ve radiation problems. J. Fluid Mech. 113: 315–332.CrossRefzbMATHADSMathSciNetGoogle Scholar
  47. Mei, C. C. 1983. The applied dynamics of ocean surface waves. Wiley & Sons.Google Scholar
  48. Newman, J. N. 1983. Three-dimensional wave interaction with ips and platforms. Proc Int. Workshop Ship & Platform Motion, Tkeley, Calif., 418–42.Google Scholar
  49. Newman, J. N. 1984. An expansion of the oscillatory source tential. Appl. Ocean Res. 6: 116–7.CrossRefADSGoogle Scholar
  50. NeWman, J. N. 1985. Transient axisymmetric motion of a float-1 cylinder. J. Fluid Mech. to appear.Google Scholar
  51. Nestegard, A., Sclavounos, P. D. 1984. A numerical solution two-dimensional deep-water wave-body problems. J. Ship Res.Google Scholar
  52. Nihous, G., Webster, W. C. 1983. An analysis of a wave-power Isorber. Proc Int. Workshop Ship and Platforms. Berkeley, Calif. 12–162.Google Scholar
  53. Noblesse, F. 1982. The Green function in the theory of radia-on and diffraction of regular waves. J. Engrg. Math. 16: 137–69.CrossRefzbMATHMathSciNetGoogle Scholar
  54. Ogilvie, T. F. 1983. Second-order hydrodynamic effects on can platforms. Proc. Int. Workshop Ship & Platform Motions. xkeley, Calif. 205–65.Google Scholar
  55. Ogilvie, T. F., Shin, Y. S. 1978. Integral-equation solutions 1r time-dependent free-surface problems. J. Soc. Naval chitects, Japan. 143: 41–51.CrossRefGoogle Scholar
  56. Porter, W. R. 1960. Pressure distributions, added mass, and Aping coefficients in a free surface. Univ of Calif., Inst. Irg. Res. Rept. 8216.Google Scholar
  57. Radder A. C. 1979. On the parabolic equation method for ter-wave propagation. J. Fluid Mech. 95: 159–76.CrossRefzbMATHADSMathSciNetGoogle Scholar
  58. Sayer, P. 1980. An integral-equation method for determining le fluid motion due to a cylinder heaving on water of finite.pth. Proc. Roy. Soc. Ser A. 372: 93–110.CrossRefzbMATHADSMathSciNetGoogle Scholar
  59. Seto, H.. Yamamoto, Y. 1975. finite element analysis of irface wave problem by a method of superpostion. Proc. 1st Int. nf. Numer. Ship Hydrodyn., Gaithersburg, Md. 49–70.Google Scholar
  60. Seto H. 1978. Fundamental studies on steady ship wave oblems by the finite element method (the fourth report). J. c. Naval Arch Japan, 144:(12)88–95 (in Japanese).CrossRefMathSciNetGoogle Scholar
  61. Susbielles, G., Bratu C. 1981. Vagues et Ouvrages Petroliers Mer. Editions Technip, Paris.Google Scholar
  62. Steinberg, S., Roache, P. J. 1985. Symbolic manipulations and Imputational fluid dynamics. J. Comp. Phys. 57: 251–84.CrossRefzbMATHADSMathSciNetGoogle Scholar
  63. Tasai, F. 1959. Damping force and added mass of ships heaving A pitching, Rept. Res. Inst. Kyushu Univ., 7: 131–52.MathSciNetGoogle Scholar
  64. Thames F. C., Thompson, J. F., Mastin, C. W., Walker, R. L. 77. Numerical solutions for viscous and potential flow about bitrary two-dimensional bodies using body-fitted coordinate ‘stem. J. Comp. Phys. 24: 245–68.Google Scholar
  65. Thacker, W. C. 1980. A brief review of techniques for Tnerating irregular computational grids. Int. J. Numer. Meth. grg. 15: 1335–42.CrossRefzbMATHGoogle Scholar
  66. Thompson, J. F., Warsi, Z. U. A., Mastin, C. W. 1982. Boun- iry-fitted coordinate systems for numerical solution of partial fferential equations-a review. J. Comp. Phys. 47: 1–108.CrossRefzbMATHADSMathSciNetGoogle Scholar
  67. Ursell, F. 1949. On the heaving motion of a circular cylinder the free surface of a fluid. Quart. J. Mech. Appl. Math. 218–31.Google Scholar
  68. Ursell, F. 1981. Irregular frequencies and the motion of floating bodies. J. Fluid Mech. 105: 143–46.CrossRefzbMATHADSMathSciNetGoogle Scholar
  69. Vinje, T., Brevig, P. 1981. Numerical simulation of breaking waves. Adv. Water Res. 4: 77–82.CrossRefGoogle Scholar
  70. Wang, S. 1966. The hydrodynamic forces and pressure distributions for an oscillating sphere in a fluid of finite depth. Ph.D. dissertation, Dept. of Naval Arch. Marine Engrg., Mass. Inst. of Tech.Google Scholar
  71. Waterman, P. C. 1969. New formulation of acoustic scattering. J. acoustic soc. Am. 45; 1417–29.CrossRefzbMATHADSGoogle Scholar
  72. Webster, W. C. 1975. The flow about arbitrary three-dimensional body. J. Ship Res. 19: 206–18.Google Scholar
  73. Webster, W. C. 1978. Computation of the hydrodynamic forces induced by general vibration of cylinders. J. Ship Res. 23: 9–19.Google Scholar
  74. Wehausen, J. V. 1977. Methods for boundary-value problems in free-surface flows. D. W. Taylor Naval Ship Res. & Dev. Ctr. Rept. 4622.Google Scholar
  75. Wehausen, J. V., Laitone, E. V. 1960. Surface Waves. Handbuch der Physik 9:446–778. Berlin: Springer Verlag.MathSciNetGoogle Scholar
  76. Winslow, A. M. 1966. Numerical solution of the quasilinear Poisson equation in non-uniform triangular mesh. J. Comp. Phys. 1: 149–72.CrossRefzbMATHADSMathSciNetGoogle Scholar
  77. Yeung, R. W. 1973. A singularity-distribution method for free-surface flow problems with an oscillating body. Univ. of Calif., Berkeley, Calif. College Engrg. Rept. NA73–6.Google Scholar
  78. Yeung, R. W. 1975. A hybrid integral-equation method for time-harmonic free-surface flow. Proc. 1st Intl Conf. Numer Ship Hydrodyn., 581–608.Google Scholar
  79. Yeung, R. W. 1982a. Numerical Methods in Free-surface flows. Ann. Rev. Fluid Mech. 14: 395–442.CrossRefADSMathSciNetGoogle Scholar
  80. Yeung, R. W. 1982b. The transient heaving motion of floating cylinders. J. Engrg. Math. 16, 97–119.CrossRefzbMATHADSGoogle Scholar
  81. Yeung, R. W., Bouger, Y. C. 1979. A hybrid integral-equation method for steady two-dimensional ship waves. Int. J. Numer. Meth. Engrg. 14: 317–36.CrossRefzbMATHGoogle Scholar
  82. Yeung, R. W., Kim, S. H. 1981. Radiation forces on ships with forward speed. Proc. 3rd Int. Conf. Numer. Ship Hydrodyn. Paris, France. 499–516.Google Scholar
  83. Yue, D. K-P., Chen, H. DS., Mei, C. C. 1978. A hybrid element method for diffraction of water waves by three-dimensional bodies. Int. J. Numer. Meth. Engrg. 12: 245–66.CrossRefzbMATHGoogle Scholar
  84. Zienkiewicz, O. C. 1970. The finite element method in engineering science. London: McGraw Hill.Google Scholar
  85. Zienkiewicz, O. C., Kelly, D. W., Bettess, P. 1977. The coupling of the finite element method and boundary solution procedures. Int. J. Numer. Meth. Engrg. 11: 355–75.CrossRefzbMATHMathSciNetGoogle Scholar
  86. Zietsman, J.F.W. 1984. The coupled finite element and boundary integral analysis of ocean wave loading: a versatile tool. Comp. Meth. Appl. Mech. Engrg. 44: 153–76.CrossRefzbMATHADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1986

Authors and Affiliations

  • Ronald W. Yeung
    • 1
  1. 1.Department of Naval Architecture & Offshore EngineeringUniversity of CaliforniaBerkeleyUSA

Personalised recommendations