Femtosecond Soliton Propagation in an Optical Fiber

  • Sien Chi
  • Chi-Feng Chen
Conference paper


An accurate wave equation beyond the slowly varying envelope approximation for femtosecond soliton propagation in an optical fiber is derived by the iterative method. The derived equation contains higher nonlinear terms than the generalized nonlinear Schrödinger equation obtained previously. For a silica-based fiber, we have shown that the higher nonlinear terms in the derived equation are negligible for optical pulses in the single cycle regime. The propagations of a 5 fs fundamental soliton and 10 fs and 50 fs second-order solitons in an optical fiber are numerically simulated. We have found that when a 5 fs fundamental soliton propagates in a fiber, it becomes asymmetric with an oscillatory structure near its trailing edge and the main pulse broadens. We have also found that, for the 10 fs second-order soliton, the soliton decay is dominated by the third-order dispersion, and for the 50 fs second-order soliton, the soliton decay is dominated by the delayed Raman response.


Main Pulse Power Evolution Raman Gain Oscillatory Structure Soliton Propagation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. L. Fork, C. H. Brito Cruz, P. C. Becker, and C. V. Shank, 1987, Opt. Lett., 12, 483.ADSCrossRefGoogle Scholar
  2. 2.
    G. P. Agrawal, Nonlinear Fiber Optics, 2nd edn ( Academic Press, New York, 1995 ) Chap. 2.Google Scholar
  3. 3.
    R. M. Joseph, S. C. Hagness, and A. Taflove, 1992, Opt. Lett., 16, 1412.ADSCrossRefGoogle Scholar
  4. 4.
    P. M. Goorjian, A. Taflove, R. M. Joseph, and S. C. Hagness, 1992, IEEE J. Quantum Electron., 28, 2416.ADSCrossRefGoogle Scholar
  5. 5.
    K. J. Blow and D. Wood, 1989, IEEE J. Quantum Electron., 25, 2665.ADSCrossRefGoogle Scholar
  6. 6.
    T. Brabec and F. Krausz, 1997, Phys. Rev. Lett., 17, 3282.ADSCrossRefGoogle Scholar
  7. 7.
    P. V. Mamyshev and S. V. Chernikov, 1990, Opt. Lett., 15, 1076.ADSCrossRefGoogle Scholar
  8. 8.
    S. Chi and S. Wen, 1996, Opt. and Quantum Electronics, 28, 1351.CrossRefGoogle Scholar
  9. 9.
    E. A. Golovchenko, E. M. Menyuk, A. M. Prokhorov, and V. N. Serkin, 1985, JETP Lett. 42, 87.ADSGoogle Scholar
  10. 10.
    P. K. A. Wai, C. R. Menyuk, Y. C. Lee, and H. H. Chen, Opt. Lett. 11, 464 (1986).ADSCrossRefGoogle Scholar
  11. 11.
    P. K. A. Wai, H. H. Chen, and Y. C. Lee, 1990, Phys. Rev. 41, 426.ADSCrossRefGoogle Scholar
  12. 12.
    J. R. Taylor, ED., Optical solitons - theory and experiment (Cambridge University Press, Cambridge, UK, 1992 ) Chap. 9.Google Scholar
  13. 13.
    W. Hodel and H. P. Weber, 1987, Opt. Lett. 12, 924.ADSCrossRefGoogle Scholar
  14. 14.
    K. Tai, A. Hasegawa, and N. Bekki, 1988, Opt. Lett. 13, 392.ADSCrossRefGoogle Scholar
  15. 15.
    G. P. Agrawal, Nonlinear Fiber Optics, 2nd edn ( Academic Press, New York, 1995 ) Chap. 5.Google Scholar
  16. 16.
    K. Ohkuma, Y. H. Ichikawa, and Y. Abe, 1987, Opt. Lett. 12, 516.ADSCrossRefGoogle Scholar
  17. 17.
    S. Chi and Q. Guo, 1995, Opt. Lett., 20, 1598.ADSCrossRefGoogle Scholar
  18. 18.
    R. H. Stolen and W. J. Tomlinson, 1989, J. Opt. Am. B, 6, 1159.ADSCrossRefGoogle Scholar
  19. 19.
    P. V. Mamyshev and S. V. Chernikov, 1992, Sov. Light. Commun. 2, 97Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Sien Chi
    • 1
  • Chi-Feng Chen
    • 1
  1. 1.Institute of Electro-Optical EngineeringNational Chiao Tung UniversityHsinchuTaiwan Republic of China

Personalised recommendations