Advertisement

Control of Spontaneous Processes

  • S. Swain
  • Peng Zhou
Conference paper
  • 518 Downloads

Abstract

We study two novel ways of modifying and controlling spontaneous emission: the first way is by mimicking the properties of a squeezed vacuum reservoir by means of a stochastic field, and the second is by mimicking the effects of quantum interference in a Vee three-level system by exploiting the cavity environment. In the latter case, by pre-selecting the polarization, we ensure that the dipole moments of the two transitions are effectively parallel.

Keywords

Master Equation Cavity Mode Quantum Interference Cavity Field Atomic Dipole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. J. Carmichael,Phys. Rev. Lett. 58 2539 (1987);Google Scholar
  2. 2.
    Peng Zhou and S. Swain, Phys. Rev. Lett. 59, 1603, (1999).ADSGoogle Scholar
  3. 3.
    G. Vemuri, Phys. Rev. A 41, 2749 (1990); 50, 2599 (1994); P. Zhou and S. Swain, ibid, 58, 4705 (1998).Google Scholar
  4. 4.
    N. G. van Kampen, “Stochastic Processes in Physics and Chemistry” (North Holland, Amsterdam, 1981), Chapter XIV; Physics Rep. 24 171 (1976), and references therein.Google Scholar
  5. 5.
    P. Zhou and S. Swain, Phys. Rev. A 58, 1515 (1998).ADSCrossRefGoogle Scholar
  6. 6.
    S. Swain, ibid. 73, 1493 (1994); S. S.ain and P. Zhou, Phys. Rev. A 52, 4845 (1995).ADSCrossRefGoogle Scholar
  7. 7.
    C. Chen, Phys. Rev. A 49, 461 (1994).CrossRefGoogle Scholar
  8. 8.
    Q. Wu ,Phys. Rev. A 49 R1519; 50 1474 (1994)Google Scholar
  9. 9.
    E. Arimondo, in Progress in Optics, North Holland, Amsterdam, 1996, p.257; J. P. Marangos, J. mod. Optics, 45, 471 (1998).Google Scholar
  10. 10.
    S. E. Harris, Phys. Rev. Lett. 62, 1033 (1989); S. E. Harris and J. J. Macklin, Phys. Rev. A 40, R4135 (1989); A. Imamoglu, Phys. Rev. A 40, R2835 (1989).CrossRefGoogle Scholar
  11. 11.
    K. J. Boller, A. Imamoglu and S. E. Harris, Phys. Rev. Lett. 66, 2593 (1991).ADSCrossRefGoogle Scholar
  12. 12.
    M. O. Scully, Phys. Rev. Lett. 67, 1855 (1991).CrossRefGoogle Scholar
  13. 13.
    D. A. Cardimona, M. G. Raymer and C. R. Stroud Jr., J. Phys. B 15, 65 (1982); G. C. Hegerfeldt and M. B. Plenio, Phys. Rev. A 46, 373 (1992).Google Scholar
  14. 14.
    P. Zhou and S. Swain, Phys. Rev. Lett. 77, 3995 (1996); Phys. Rev. A 56, 3011 (1997).CrossRefGoogle Scholar
  15. 15.
    S. Y. Zhu and M. O. Scully, Phys. Rev. Lett. 76, 388 (1996); E. Paspalakis and P. L. Knight, Phys. Rev. Lett. 81, 293 (1998).Google Scholar
  16. 16.
    H. R. Xia, C. Y. Ye and S. Y. Zhu, Phys. Rev. Lett. 77, 1032 (1996).ADSCrossRefGoogle Scholar
  17. 17.
    E. Paspalakis, N. J. Kylstra, and P. L. Knight, Phys. Rev. Lett. 82, 2079 (1999).ADSCrossRefGoogle Scholar
  18. 18.
    A. K. Patnaik and G. S. Agarwal, Phys. Rev. A 59, 3015 (1999).ADSCrossRefGoogle Scholar
  19. 19.
    P. R. Berman, Phys. Rev. A 55, 4886 (1998).Google Scholar
  20. 20.
    M. O. Scully, S. Y. Zhu and A. Gavrielides, Phys. Rev. Lett. 62, 2813 (1989). M. Fleischauer, C. H. Keitel, L. M. Narducci, M. O. Scully, S. Y. Zhu and M. S. Zubairy, Opt. Commun. 94, 599 (1992); S. Y. Zhu, L. M. Narducci and M. O. Scully, Phys. Rev. A 52, 4791 (1995); G. S. Agarwal, Phys. Rev. A 54, R3734 (1996).Google Scholar
  21. 21.
    P. Zhou and S. Swain, Opt. Commun. - to be publishedGoogle Scholar
  22. 22.
    P. Zhou and S. Swain, Phys. Rev. Lett. 78, 832 (1997); J. Opt. Soc. Am. B 15, 2583 (1998).ADSCrossRefGoogle Scholar
  23. 23.
    P. Zhou and S. Swain, Phys. Rev. A 58 1515 (1998), and references therein.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • S. Swain
    • 1
  • Peng Zhou
    • 1
  1. 1.Department of Applied Mathematics and Theoretical PhysicsThe Queen’s University of BelfastBelfastUK

Personalised recommendations