Advertisement

High Efficiency Frequency Up-Conversion Enhanced by Electromagnetically Induced Transparency

  • C. Dorman
  • I. Kucukkara
  • M. Anscombe
  • R. Semaoune
  • J. P. Marangos
Conference paper
  • 524 Downloads

Abstract

Electromagnetically induced transparency (EIT) can enhance the conversion efficiency of a resonant four-wave mixing scheme. This is demonstrated for a scheme in Kr resulting in the generation of a field at 123.6 mn. The absolute VUV radiation yield was measured using a calibrated photodiode in the limit of a large density-length product. Energies of 30 ~ nJ per pulse were produced, with an energy conversion efficiency from the coupling field of ~ 1%. Higher yields are thought to be achievable by the use of a transform limited UV pulse of the same duration as the coupling field and by increasing the coupling laser intensity and the path length in the medium.

Keywords

Pulse Energy Rabi Frequency Coupling Field Doppler Width Coupling Laser 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Harris S. E., J. E. Field, and A. Imamoglu, Phys. Rev. Lett., 64, 1107, (1990)ADSCrossRefGoogle Scholar
  2. 2.
    G. Hilbig, and R. Wallenstein, IEEE J. Quantum Electron., QE-19, 194 (1983)Google Scholar
  3. 3.
    J. P. Marangos, N. Shen, H. Ma, M. H. R. Hutchinson and J. P. Connerade, J. Opt. Soc. Am. B,. 7, 1254 (1990)ADSCrossRefGoogle Scholar
  4. 4.
    M. Jain, G. Y. Yin, J. E. Field and S. E. Harris, Opt. Lett., 18, 998 (1993)ADSCrossRefGoogle Scholar
  5. 5.
    A. J. Merriam, S. J. Sharpe, H. Xia, D. Manuszak, G. Y. Yin and S. E. Harris, Optics Lett., 24, 625 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    G. Z. Zhang, K. Hakuta, B. P. Stoicheff, Phys. Rev. Lett., 71, 3099 (1993)ADSCrossRefGoogle Scholar
  7. 7.
    J.C.Petch, C.H.Keitel, P.L.Knight and J.P.Marangos, Phys.Rev.A, 53, 543 (1996)Google Scholar
  8. 8.
    C. Dorman and J. P. Marangos, Phys. Rev. A, 58, 4121 (1998)ADSCrossRefGoogle Scholar
  9. 9.
    W.R.Hindmarsh and J.M.Farr, Progress in Quantum Electronics, ed J.H.Sanders and S.Stenholm, (2, 141, Pergamon, New York, 1972 )Google Scholar
  10. 10.
    U.S Department of Commerce, National Bureau of Standards, Report of Test, P.O. C3XD 9607400 (1987)Google Scholar
  11. 11.
    Harris.S.E and Z: F.Luo, Phys.Rev.A, 52, R928 (1995)Google Scholar
  12. 12.
    Lu Deng, W. R. Garret, M. G. Payne, and D. Z. Lee, Optics Letters, 21, 928 (1996).ADSCrossRefGoogle Scholar
  13. 13.
    S. D. Bergesson, A. Balakrishnan, K. G. H. Baldwin, T. B. Lucatorto, J. P. Marangos, T. J. McIlrath, T. R. O’Brian, S. L. Rolston, C. JU. Sansonetti, Jesse Wen, N Westbrook, C. H. Chen and E. E. Eyler, Phys. Rev. Letters, 80, 3475 (1998)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • C. Dorman
    • 1
  • I. Kucukkara
    • 1
  • M. Anscombe
    • 1
  • R. Semaoune
    • 1
  • J. P. Marangos
    • 1
  1. 1.Physics Department, Blackett LaboratoryImperial College of Science Technology and MedicineLondonUK

Personalised recommendations