Two Dimensional Nonlinear Dynamics of Cold Atoms in Hollow Fiber

  • X. M. Liu
  • G. J. Milburn
Conference paper


We describe the classical and quantum two dimensional nonlinear dynamics of large blue-detuned eveanescent-wave guiding cold atoms in hollow fiber. We show that the atoms will accumulate on several annular regions when the system enters a regime of globally classical chaos. When the atomic flux is very small, a similar distribution will be obtained if we detect the atomic distribution once each the modualtion period and integrate the signals. For quantum dynamics, quantum collapses and revivals appear. For periodically modulated optical potential, the variance of atomic position will be supressed compared to the no modulation case. The atomic angular momentum will influnce the evolution of wave function in two dimensional quantum system of hollow fiber.


Hollow Fiber Poisson Bracket Optical Potential Cold Atom Reflection Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Ito, K. Sakaki, W. Jhe, M. Ohtsu, Opt. Commun. 141, 43–47 (1997).Google Scholar
  2. 2.
    H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, Phys. Rev. Lett. 76, 4500 (1996).Google Scholar
  3. 3.
    Michael J. Renn, Elizabeth A. Donley, Eric Cornell, Carl E. Wieman, Dana Z. Anderson, Phys. Rev. A. 53, R648 (1996).Google Scholar
  4. 4.
    F.L.Moore, J.C.Robinson, C. Bharucha, P.E.Williams adn M.G.Raizen, Phys. Rev. Lett, 73, 2974 (1994).ADSCrossRefGoogle Scholar
  5. 5.
    R.V.Jensen,S.M.Susskind and M.M.Sanders, Phys. Rep. 201, 1 (1991).ADSCrossRefGoogle Scholar
  6. 6.
    C.M.MArcus,A.J.Rimberg,R.M.Westervelt,P.F.Hopkins, and A.C.GOssard, Phys. REv. Lett. 69, 506 (1992).ADSCrossRefGoogle Scholar
  7. 7.
    R. P. Taylor,R. Newbury,A. S. Sachrajda,Y. Feng,P. T. Coleridge,C. Dettmann,Ningjia Zhu,Hong Guo, A. Delage,P.J. Kelly, and Z. Wasilewski, Phys. Rev. Lett 78, 1952 (1997).ADSCrossRefGoogle Scholar
  8. 8.
    A.R.Kovlosky, Phys. Rev. E 50, 3569 (1994).ADSCrossRefGoogle Scholar
  9. 9.
    Wenyu Chen, S.Dyrting and G. J. Milburn, Australia Journal of Physics, 49, 777–818 (1996).ADSCrossRefGoogle Scholar
  10. 10.
    C. Cohen-Tannoudji, in Fundamental Systems in Quantum Optics, Proceedings of the Les Houches Summer School(North-Holland, Amsterdm, 1992 ).Google Scholar
  11. 11.
    A.J.Lichtenberg, M.A. Lieberman (1983), Regular and Stochastic motion, Springer-Verlag, New York,Heeidelberg Berlin.Google Scholar
  12. 12.
    Etienne Forest and Martin Berz. Canonical integration and analysis of periodic maps using non-standard analysis and Lie methods. In Kurt Bernardo Wolf, editor, Lie Methods in Optics II, page 47, Berlin Heidelberg, 1989, Springer-Verlag.Google Scholar
  13. 13.
    S.Dyrting. Ph.D thesis (1995), Department of Physics, University of Queensland.Google Scholar
  14. 14.
    X.M. Liu and G.J. Milburn, Phys. Rev. E, 59, 2842 (1999).Google Scholar
  15. 15.
    Ronnie Kosloff, J. Phys. Chem, 92, 2087 (1988).Google Scholar
  16. 16.
    Lothar Collatz (1986), Differential Equations: An Introduction with Applications,John Wiley and Sons.Google Scholar
  17. 17.
    William H Press et al (1992), Numerical Recipes in C, Cambridge, University Press.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • X. M. Liu
    • 1
  • G. J. Milburn
    • 1
  1. 1.The Center for Laser Sciences, Department of PhysicsThe University of QueenslandSt. Lucia, BrisbaneAustralia

Personalised recommendations