Atomic-State Teleportation Using GHZ State

  • Shang-qing Gong
  • Zhong-yang Wang
  • Xun-li Feng
  • Zhi-zhan Xu
Conference paper


Following the principle outlined by Karlsson and Bourennane [Phys. Rev. A 56, 5394(1998)], we propose an experimentally feasible scheme for the teleportation of an unknown atomic state among three high-Q cavities containing a nonlocal quantum superposition of microwave field states, in which the unknown atomic state can be completely teleported to either of two locations. This scheme can also be used for the teleportation of a cavity field in a superposition of zero-and one-photon Fock states.


Entangle State Bell State Quantum Teleportation Cavity Field Feasible Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bennett, C.H. (1993) Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1898.Google Scholar
  2. 2.
    Davidovich, L. (1994) Teleportation of an atomic state between two cavities using nonlocal microwave fields. Phys. Rev. A50, R895 - R898.ADSCrossRefGoogle Scholar
  3. 3.
    Cirac, J.I. and Parkins, A.S (1994) Schemes for atomic-state teleportation. Phys. Rev. A50, R4441 - R4444.ADSCrossRefGoogle Scholar
  4. 4.
    Greenberger, D.M. (1990) Bell’s theorem without inequalities. Am. J. Phys. 58, 1131–1143.Google Scholar
  5. 5.
    Bouwmeester, D. (1999) Observation of three-photon Greenberger-HorneZeilinger entanglement. Phys. Rev. Lett. 82, 1345–1348.MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. 6.
    Vedral, V. and Plenio, M.B. (1999) Basics of quantum computation. Progress in Quantum Electronics 22, 1–39.ADSCrossRefGoogle Scholar
  7. 7.
    Ekert, A. (1991) Quantum cryptography based on Bell’s Theorem. Phys. Rev. Lett. 67, 661–663.MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. 8.
    Karlsson, A. and Bourennane, M. (1998) Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 4394–4400.MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    Wootters, W.K. and Zurek, W.H. (1982) A single quantum cannot be cloned. Nature (London)299, 802–804.Google Scholar
  10. 10.
    Bergou, J.A. and Hillery, M. (1997) Generation of highly entangled field states in multiple micromaser cavities. Phys. Rev. A 55, 4585–4588.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Shang-qing Gong
    • 1
  • Zhong-yang Wang
    • 1
  • Xun-li Feng
    • 1
  • Zhi-zhan Xu
    • 1
  1. 1.Laboratory for High Intensity Optics, Shanghai Institute of Optics and Fine MechanicsChinese Academy of SciencesShanghaiChina

Personalised recommendations