Advertisement

Experimental Implementation of Quantum Computing with Macroscopic Ensemble of Quantum Spins

  • Xiwen Zhu
  • Ximing Fang
  • Mang Feng
  • Fei Du
  • Kelin Gao
  • Xi’an Mao
Conference paper
  • 521 Downloads

Abstract

We have carried out several ensemble quantum computing experiments by NMR spectroscopy with sample of carbon-13 labeled chloroform. Here we mainly demonstrate the experimental realization of quantum dense coding which can transmit two classical bits of information by coding one of the EPR pair. All the experiments were proceeded by preparing the pseudo-pure states, manipulating the qubits according to the algorithms and read out the final outcomes. The extracted data are in good agreement with the expected results.

Keywords

Nuclear Magnetic Resonance Nuclear Magnetic Resonance Spectroscopy Quantum Algorithm Dense Code Experimental Implementation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Feynman R. P., (1982) Simulating physics with computers. Int. J. Theor.Phys. 21, 467–488MathSciNetCrossRefGoogle Scholar
  2. 2.
    Deutsch D., (1985) Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. Soc. Lond. A400, 97–117MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. 3.
    Shor P., (1994) Algorithms for quantum computation:discrete logarithms and factoring. Proc. 35th Annu. Symp. on Found. of Computer Science, 124–134 ( IEEE Comp. Soc. Press, Los Alomitos, CA )Google Scholar
  4. 4.
    DiVincenzo D.P., (1995) Quantum computation. Science 270, 255–261MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. 5.
    Lloyd S., (1995) Quantum-mechanical computers. Sci. Am. 273, 44–50ADSCrossRefGoogle Scholar
  6. 6.
    Grover L. K.,(1997) Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325–328Google Scholar
  7. 7.
    Hogg T., (1998) Highly structured searches with quantum computers. Phys. Rev. Lett. 80, 2473–2476ADSCrossRefGoogle Scholar
  8. 8.
    Bernett C.H. and Wiesner S.J., (1992) Communication via one- and two-particle operations on Einstein-Podolsky-Rosen states. Phys.Rev.Lett., 69, 2881–2884MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    Mattle K., Weinfurter H., Kwiat P.G. and Zeilinger A., (1996) Dense coding in experimental quantum communication. Phys.Rev.Lett., 76, 4656–4659ADSCrossRefGoogle Scholar
  10. 10.
    Gershenfeld N. and Chuang I.L., (1997) Bulk spin resonance quantum computation. Science 275, 350–356MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Chuang I.L., Vandersypen L.M.K., Zhou X., Leung D. and Lloyd S., (1998), Experimental realization of a quantum algorithm, Nature 393, 143–146ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Xiwen Zhu
    • 1
  • Ximing Fang
    • 1
  • Mang Feng
    • 1
  • Fei Du
    • 1
  • Kelin Gao
    • 1
  • Xi’an Mao
    • 1
  1. 1.Laboratory of Magnetic Resonance and Atomic and Molecular PhysicsWuhan Institute of Physics and Mathematics, SciencesWuhanP. R. China

Personalised recommendations