Single Atom Masers and Lasers

  • Herbert Walther
Conference paper


In this paper recent experiments performed in our laboratory are reviewed dealing with the investigation of quantum phenomena in the radiation interaction of single atoms. The first part describes experiments in single mode cavities using the one-atom maser or micromaser and in the second part experiments with ion traps are summarized. The latter experiments concentrate on the investigation of resonance fluorescence. In addition new experimental proposals using ultracold atoms in cavities and traps are discussed. In those future experiments the interplay between atomic waves and light waves is important leading to new phenomena in radiation-atom interaction such as the modification of the Rabi vacuum splitting.


Photon Number Rydberg Atom Cavity Field Maser Field Pump Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Meschede, H. Walther, and G. Müller: The one-atom maser. Phys. Rev. Lett. 54, 551–554 (1985)ADSCrossRefGoogle Scholar
  2. 2.
    G. Rempe, H. Walther, and N. Klein: Observation of quantum collapse and revival in the one-atom maser. Phys. Rev. Lett. 58, 353–356 (1987)ADSCrossRefGoogle Scholar
  3. 3.
    G. Rempe, F. Schmidt-Kaler, and H. Walther: Observation of sub-Poissonian photon statistics in a micromaser. Phys. Rev. Lett. 64, 2783–2786 (1990)ADSCrossRefGoogle Scholar
  4. 4.
    G. Rempe and H. Walther: Sub-Poissonian atomic statistics in a micromaser. Phys. Rev. A 42, 1650–1655 (1990)ADSCrossRefGoogle Scholar
  5. 5.
    H.J. Kimble, O. Carnal, N. Georgiades, H. Mabuchi, E.S. Polzik, R.J. Thompson, and Q.A. Turchette: Quantum optics with strong coupling. In: Atomic Physics, D.J. Wineland, C.E. Wieman, S.J. Smith (Eds.), Vol. 14 ( American Insitute of Physics, New York 1995 ) pp. 314–335Google Scholar
  6. 6.
    K. An, J.J. Childs, R.R. Dasari, M.S. Feld: Microlaser: a laser with one atom in an optical resonator. Phys. Rev. Lett. 73, 3375–3378 (1994)ADSCrossRefGoogle Scholar
  7. 7.
    C. Wagner, R.J. Brecha, A. Schenzle, and H. Walther: Phase diffusion, entangled states and quantum measurements in the micromaser. Phys. Rev. A 47, 50685079 (1993)Google Scholar
  8. 8.
    M. Löffler, B.-G. Englert, and H. Walther: Testing a Bell-type inequality with a micromaser. Appl. Phys. B 63, 511–516 (1996)ADSCrossRefGoogle Scholar
  9. 9.
    O. Benson, G. Raithel, and H. Walther: Quantum jumps of the micromaser field — dynamic behavior close to phase transition points. Phys. Rev. Lett. 72, 3506–3509 (1994)ADSCrossRefGoogle Scholar
  10. 10.
    G. Raithel, O. Benson, and H. Walther: Atomic interferometry with the micro-maser. Phys. Rev. Lett. 75, 3446–3449 (1995)ADSCrossRefGoogle Scholar
  11. 11.
    G. Raithel, C. Wagner, H. Walther, L.M. Narducci, and M.O. Scully: The micromaser: a proving ground for quantum physics. In: Advances in Atomic, Molecular, and Optical Physics, Supplement 2, P. Berman (Ed.) ( Academic Press, New York 1994 ) pp. 57–121Google Scholar
  12. 12.
    P. Filipowicz, J. Javanainen, and P. Meystre: Theory of a microscopic maser Phys. Rev. A 34, 3077–3087 (1986)CrossRefGoogle Scholar
  13. 13.
    L.A. Lugiato, M.O. Scully, and H. Walther: Connection between microscopic and macroscopic maser theory. Phys. Rev. A 36, 740–743 (1987)ADSCrossRefGoogle Scholar
  14. 14.
    P. Meystre: Cavity quantum optics and the quantum measurement process. In: Progress in Optics, Vol. 30, E. Wolf (Ed.) (Elsevier Science Publishers, New York 1992 ) pp. 261–355Google Scholar
  15. 15.
    J.M. Raimond, M. Brune, L. Davidovich, P. Goy, and S. Haroche: The two-photon Rydberg atom micromaser Atomic Physics 11, 441–445 (1989)Google Scholar
  16. 16.
    N.F.Ramsey, In: Molecular Beams ( Clarendon Press, Oxford 1956 ) pp. 124–134Google Scholar
  17. 17.
    C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg: In: Atom-Photon Interactions (John Wiley and Sons, Inc., New York 1992 ) pp. 407–514Google Scholar
  18. 18.
    C. Wagner, A. Schenzle, and H. Walther: Atomic waiting-times and correlation functions. Optics Communications 107, 318–326 (1994)ADSCrossRefGoogle Scholar
  19. 19.
    H. Walther: Experiments on cavity quantum electrodynamics. Phys. Reports 219, 263–281 (1992)ADSCrossRefGoogle Scholar
  20. 20.
    B.-G. Englert, M. Löffler, O. Benson, B. Varcoe, M. Weidinger, and H. Walther: Entangled atoms in micromaser physics. Fortschritte der Physik 46, 897–926 (1998)ADSCrossRefGoogle Scholar
  21. 21.
    H.J. Briegel, B.-G. Englert, N. Sterpi, and H. Walther: One-atom maser: statistics of detector clicks. Phys. Rev. A 49, 2962–2985 (1994)ADSCrossRefGoogle Scholar
  22. 22.
    P. Meystre, G. Rempe, and H. Walther: Very-low temperature behavior of a micromaser. Opt. Lett. 13, 1078–1080 (1988)ADSCrossRefGoogle Scholar
  23. 23.
    M. Weidinger, B.T.H. Varcoe, R. Heerlein, and H. Walther: Trapping states in the micromaser. Phys. Rev. Lett. 82, 3795–3798 (1999)ADSCrossRefGoogle Scholar
  24. 24.
    J. Krause, M.O. Scully, and H. Walther: State reduction and I n)-state preparation of a high-Q micromaser Phys. Rev. A. 36, 4547–4550 (1987)CrossRefGoogle Scholar
  25. 25.
    P. J. Bardoff, E. Mayr, and W.P. Schleich: Quantum state endoscopy: measurement of the quantum state in a cavity. Phys. Rev. A. 51, 4963–4966 (1995)ADSCrossRefGoogle Scholar
  26. 26.
    B.T.H. Varcoe, S. Brattke, M. Weidinger, and H. Walther, Nature in print Google Scholar
  27. 27.
    M. Brune, F. Schmidt-Kaler, A. Maali, J. Dreyer, E. Hagley, J M Raimond, and S. Haroche: Quantum Rabi oscillation: a direct test of field quantization in a cavity. Phys. Rev. Lett. 76, 1800–1803 (1996)ADSzbMATHCrossRefGoogle Scholar
  28. 28.
    D. M. Greenberger, M. Horne, and A. Zeilinger: In Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, M. Kafatos, (Ed.) ( Kluwer, Dordrecht 1989 )Google Scholar
  29. 29.
    D.M. Greenberger, M. Horne, M. Shimony, and A. Zeilinger: Bell’s theorem without inequalities. Am. J. Phys. 58, 1131–1143 (1990)MathSciNetADSCrossRefGoogle Scholar
  30. 30.
    B.-G. Englert, N. Sterpi, and H. Walther: Parity states in the one-atom maser. Opt. Commun. 100, 526–535 (1993)ADSCrossRefGoogle Scholar
  31. 31.
    N.D. Mermin• What’s wrong with these elements of reality. Physics Today, 43 (6), 9–11 (1990)CrossRefGoogle Scholar
  32. 32.
    M.O. Scully, G.M. Meyer, and H. Walther: Induced emission due to the quantized motion of ultra-cold atoms passing through a micromaser cavity. Phys. Rev. Lett. 76, 4144–4147 (1996)ADSCrossRefGoogle Scholar
  33. 33.
    G.M. Meyer, M.O. Scully, and H. Walther: Quantum theory of the mazer: I. General theory. Phys. Rev. A 56, 4142–4152 (1997)ADSCrossRefGoogle Scholar
  34. 34.
    M. Löffler, G.M. Meyer, M. Schröder, M.O Scully, and H. Walther: Quantum theory of the mazer: II. Extensions and experimental conditions. Phys. Rev. A 56, 4153–4163 (1997)ADSCrossRefGoogle Scholar
  35. 35.
    M. Schrader, K. Vogel, W.P. Schleich, M.O. Scully, and H. Walther: Quantum theory of the mazer: III. Spectrum. Phys. Rev. A 57, 4164–4174 (1997)ADSCrossRefGoogle Scholar
  36. 36.
    W. Hartig, W. Rasmussen, R. Schieder, and H. Walther: Study of the frequency distribution of the fluorescent light induced by monochromatic excitation. Z. Physik A 278, 205–210 (1976)ADSCrossRefGoogle Scholar
  37. 37.
    J.D.Cresser, J. Häger, G. Leuchs, F.M. Rateike, and H. Walther: Resonance fluorescence of atoms in strong monochromatic laser fields. Topics in Current Physics 27, 21–59 (1982)CrossRefGoogle Scholar
  38. 38.
    P.S. Jessen, C. Gerz, P.D. Lett, W.D. Philipps, S.L. Rolston, R.J.C. Spreuuw, and C.I. Westbrook: Observation of quantized motion of Rb atoms in an optical field. Phys. Rev. Lett. 69, 49–52 (1992)ADSCrossRefGoogle Scholar
  39. 39.
    W. Heitler: In: The Quantum Theory of Radiation, Third Edition ( University Press, Oxford 1954 ) pp. 196–204Google Scholar
  40. 40.
    B.R. Mollow: Power spectrum of light scattered by two-level systems. Phys. Rev. 188, 1969–1975 (1969)ADSCrossRefGoogle Scholar
  41. 41.
    F. Schuda, C. Stroud, Jr., and M. Hercher: Observation of the resonant Stark effect at optical frequencies. J. Phys. B 1, L198 — L202 (1974)CrossRefGoogle Scholar
  42. 42.
    H. Walther: Atomic fluorescence induced by monochromatic excitation. Lecture Notes in Physics 43, 358–369 (1975)ADSCrossRefGoogle Scholar
  43. 43.
    F.Y. Wu, R.E. Grove, and S. Ezekiel: Investigation of the spectrum of resonance fluorescence induced by a monochromatic field. Phys. Rev. Lett. 35, 1426–1429 (1975); R.E. Grove, F.Y. Wu, and S. Ezekiel: Measurement of the spectrum of resonance fluorescence from a two-level atom in an intense monochromatic field. Phys. Rev. Lett. A 15, 227–233 (1977)Google Scholar
  44. 44.
    H.M. Gibbs and T.N.C. Venkatesan: Direct observation of fluorescence narrower than the natural linewidth. Opt. Comm. 17, 87–94 (1976)ADSCrossRefGoogle Scholar
  45. 45.
    H.J. Kimble, M. Dagenais, and L. Mandel: Photon antibunching in resonance fluorescence. Phys. Rev. Lett. 39, 691–695 (1977)ADSCrossRefGoogle Scholar
  46. 46.
    E. Jakeman, E.R. Pike, P.N. Pusey, and J.M. Vaugham: The effect of atomic number fluctuations on photon antibunching in resonance fluorescence. J. Phys. A 10, L257 — L259 (1977)ADSCrossRefGoogle Scholar
  47. 47.
    H.J. Kimble, M. Dagenais, and L. Mandel: Multiatom and transit-time effects in photon correlation measurements in resonance fluorescence. Phys. Rev. A 18, 201–207 (1978); M. Dagenais and L. Mandel: Investigation of two-atom correlations in photon emissions from a single atom. Phys. Rev. A 18, 22172218 (1978)Google Scholar
  48. 48.
    F.M. Rateike, G. Leuchs, and H. Walther, results cited in Ref. 27Google Scholar
  49. 49.
    F. Diedrich and H. Walther: Non-classical radiation of a single stored ion. Phys. Rev. Lett. 58, 203–206 (1987)ADSCrossRefGoogle Scholar
  50. 50.
    D.F. Walls: Evidence for the quantum nature of light. Nature 280, 451–454 (1979)ADSCrossRefGoogle Scholar
  51. 51.
    R. Short and L. Mandel: Observation of sub-Poissonian photon statistics. Phys. Rev. Lett. 51, 384–387 (1983)ADSCrossRefGoogle Scholar
  52. 52.
    C.A. Schrama, E. Peik, W.W. Smith, and H. Walther: Novel miniature ion traps. Opt. Comm. 101, 32–36 (1993)ADSCrossRefGoogle Scholar
  53. 53.
    J.T. Höffges, H.W. Baldauf, T. Eichler, S.R. Helmfrid, and H. Walther: Heterodyne measurement of the fluorescent radiation of a single trapped ion. Opt. Communications 133, 170–174 (1997)ADSCrossRefGoogle Scholar
  54. 54.
    J.T. Höffges, H.W. Baldauf, W. Lange, and H. Walther: Heterodyne measurement of the resonance fluorescence of a single ion. Journal of Modern Optics 55, 1999–2010 (1997)CrossRefGoogle Scholar
  55. 55.
    R. Loudon: Non-classical effects in the statistical properties of light. Rep. Progr. Phys. 43, 913–949 (1980)MathSciNetADSCrossRefGoogle Scholar
  56. 56.
    Y. Mu and C.M. Savage: One-atom lasers. Phys. Rev. A 46, 5944–5954 (1992)ADSCrossRefGoogle Scholar
  57. 57.
    C. Ginzel, H.J. Briegel, U. Martini, B.-G. Englert, and A. Schenzle: Quantum optical master equations: the one-atom laser. Phys. Rev. A 48, 732–738 (1993)ADSCrossRefGoogle Scholar
  58. 58.
    T. Pellizzari and H.J. Ritsch: Photon statistics of the three-level one-atom laser. Mod. Opt. 41, 609–623 (1994); Preparation of stationary Fock states in a one-atom Raman laser. Phys. Rev. Lett. 72, 3973–3976 (1994); P. Horak, K.M. Gheri, and H. Ritsch: Quantum dynamics of a single-atom cascade laser. Phys. Rev. A 51, 3257–3266 (1995)Google Scholar
  59. 59.
    H.-J. Briegel, G.M. Meyer, and B.-G. Englert: Dynamic noise reduction in multilevel lasers: nonlinear theory and the pump-operator approach. Phys. Rev. A 53, 1143–1159 (1996); Pump operator for lasers with multi-level excitation. Europhys. Lett. 33, 515–520 (1996)ADSGoogle Scholar
  60. 60.
    For a recent review see E. Arimondo: Coherent population trapping in laser spectroscopy. In: Progress in Optics, vol. XXXV, E. Wolf (Ed.) ( Elsevier, Amsterdam 1996 ) pp. 257–354Google Scholar
  61. 61.
    A.M. Khazanov, G.A. Koganov, and E.P. Gordov: Macroscopic squeezing in three-level laser. Phys. Rev. A 42, 3065–3069 (1990); T.C. Ralph and C.M. Savage: Squeezed light from a coherently pumped four-level laser. Phys. Rev. A 44, 7809–7814, (1991); H. Ritsch, P. Zoller, C.W. Gardiner, and D.F. Walls: Laser light by dynamic pump-noise suppression. Phys. Rev. A 44, 3361–3364 (1991)Google Scholar
  62. 62.
    K.M. Gheri and D.F. Walls: Squeezed lasing without inversion or light amplification by coherence. Phys. Rev. A 45, 6675–6686 (1992); H. Ritsch and M.A.M. Marte: Quantum noise in Raman lasers: effects of pump bandwidth and super-and sub-Poissonian pumping. Phys. Rev. A 47, 2354–2365 (1993)Google Scholar
  63. 63.
    G.M. Meyer, H.-J. Briegel, and H. Walther: Ion-trap laser. Europhys. Lett. 37, 317–322 (1997)ADSCrossRefGoogle Scholar
  64. 64.
    G.M. Meyer, M. Löffler, and H. Walther: Spectrum of the ion-trap laser. Phys. Rev. A 56, R1099 — R1102 (1997)ADSCrossRefGoogle Scholar
  65. 65.
    M. Löffler, G.M. Meyer, and H. Walther: One atom laser with quantized centreof-mass motion. Europhys. Lett. 40, 263–268 (1997)ADSCrossRefGoogle Scholar
  66. 66.
    M. Löffler, G.M. Meyer, and H. Walther: Spectral properties of the one-atom maser Phys. Rev. A 55, 3923–3930 (1997)CrossRefGoogle Scholar
  67. 67.
    M. Löffler and H. Walther: Velocity selection for ultracold atoms using a micromaser. Europhys. Lett. 41, 593–598 (1998)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Herbert Walther
    • 1
  1. 1.Sektion Physik der Universität München and Max-Planck-Institut für QuantenoptikGarchingGermany

Personalised recommendations