Quantum Entanglement: from Popper’s Experiment to Quantum Eraser

  • Yanhua Shih
  • Yoon-Ho Kim
Conference paper


Uncertainty, being perhaps the most basic principle of quantum mechanics, distinguishes the world of quantum phenomena from the realm of classical physics. Quantum entanglement, being perhaps the most surprising consequence of quantum mechanics, on the other hand apparently suggests paradoxes relating to or violations of the quantum mechanical uncertainty principle in some experimental situations. Popper’s experiment and quantum eraser are two examples. Is this a paradox? Are we confronted by a violation of the uncertainty principle? These questions are addressed in this paper.


Uncertainty Principle Quantum Entanglement Ghost Image Joint Detection Optical Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev., 47, 777 (1935).ADSzbMATHCrossRefGoogle Scholar
  2. 2.
    K.R. Popper, Zur Kritik der Ungenauigkeisrelationen, Die Naturwissenschaften, 22, Helft, 48, 807 (1934)Google Scholar
  3. K. R. Popper, From the Postscript to the Logic of Scientific Discovery, edited by E.I. Bitsakis and N Tambakis, Gutenberg Publishing, (1984)Google Scholar
  4. K. Popper, Quantum Theory And The Schism In Physics, edited by W.W. Bartly, Hutchinson, London, 28 (1983). Amongst the most notable opponents to the “Copenhagen School” were Einstein-Podolsky-Rosen, de Broglie, Landé, and Karl Popper. One may not agree with Popper’s philosophy (EPR classical reality as well) but once again, Popper’s thought experiment gives yet another way of understanding the foundations of quantum theory.Google Scholar
  5. 3.
    M.O. Scully and K. Drühl, Phys. Rev. A 25, 2208 (1982).ADSCrossRefGoogle Scholar
  6. 4.
    The use of a “point source” in the original Popper’s proposal has been criticized. The basic argument is that a point source can never produce a pair of entangled particles which preserves two-particle momentum conservation. However, a “point source” is not a necessary requirement for Popper’s experiment. What we need is to learn the precise knowledge of a particle’s position through quantum entanglement. This is achieved in our experiment by the “ghost image”.Google Scholar
  7. 5.
    D.N. Klyshko, Photon and Nonlinear Optics, Gordon and Breach Science, New York, (1988).Google Scholar
  8. 6.
    A. Yariv, Quantum Electronics, John Wiley and Sons, New York, (1989).Google Scholar
  9. 7.
    T.B. Pittman, Y.H. Shih, D.V. Strekalov, and A.V. Sergienke, Phys. Rev. A, 52, R3429 (1995).ADSCrossRefGoogle Scholar
  10. 8.
    R.P. Feynman, R. Leighton, and M. Sands, The Feynman Lectures on Physics, Vol. III, ( Addison-Wesley, Reading, Massachusetts, 1965 ).zbMATHGoogle Scholar
  11. 9.
    For criticisms of Popper’s experiment, see for example, D. Bedford and F. Selleri, Lettere al Nuovo Cimento, 42, 325 (1985)CrossRefGoogle Scholar
  12. M.J. Collett and R. Loudon, Nature, 326, 671 (1987)ADSCrossRefGoogle Scholar
  13. A. Sudbery, Philosophy of Science, 52, 470 (1985).MathSciNetCrossRefGoogle Scholar
  14. 10.
    M. Horne, Experimental Metaphysics, ed. R.S. Cohen, M. Home, and J. Stachel, Kluwer Academic, 109 (1997).Google Scholar
  15. 11.
    In type-I SPDC, signal and idler are both ordinary rays of the crystal; however, in type-II SPDC the signal and idler are orthogonal polarized, i.e., one is the ordinary ray and the other is the extraordinary ray of the crystal.Google Scholar
  16. 12.
    M.H. Rubin, D.N. Klyshko, and Y.H. Shih, Phys. Rev. A 50, 5122 (1994).ADSCrossRefGoogle Scholar
  17. 13.
    D. Bohm, Quantum Theory, Prentice Hall Inc., New York, (1951).Google Scholar
  18. 14.
    E.Schrödinger, Naturwissenschaften 23, 807, 823, 844 (1935)CrossRefGoogle Scholar
  19. J.A. Wheeler and W.H. Zurek, Princeton University Press, New York, (1983).Google Scholar
  20. 15.
    Y.H. Shih, A.V. Sergienko, and M.H. Rubin, Phys. Rev. A, 50, 23 (1994).ADSCrossRefGoogle Scholar
  21. 16.
    N. Bohr, Naturwissenschaften, 16, 245 (1928).ADSzbMATHCrossRefGoogle Scholar
  22. 17.
    See Wheeler’s “delayed choice”, in Quantum Theory and Measurement,edited by J.A. Wheeler and W.H. Zurek, Princeton Univ. Press (1983).Google Scholar
  23. 18.
    A.G. Zajonc et al.,Nature, 353, 507 (1991)ADSCrossRefGoogle Scholar
  24. P.G. Kwiat et al.,Phys. Rev. A 49, 61 (1994)ADSCrossRefGoogle Scholar
  25. T.J. Herzog et al.,Phys. Rev. Lett., 75, 3034 (1995)ADSCrossRefGoogle Scholar
  26. T.B. Pittman et al.,Phys. Rev. Lett., 77, 1917 (1996).ADSCrossRefGoogle Scholar
  27. 19.
    C.O. Alley, O.G. Jakubowicz, and W.C. Wickes, Proceedings of the 2nd International Symposium on Foundations of Quantum Mechanics, Tokyo 1986, M. Namiki, et al. (eds.), Kokubunji, Tokyo, Japan: Physical Society of Japan (1987)Google Scholar
  28. T. Hellmuth, H. Walther, A. Zajonc, and W. Schleich, Phys. Rev. A 35, 2532 (1987).ADSCrossRefGoogle Scholar
  29. 20.
    R.J. Glauber, Phys. Rev. 130, 2529 (1963)MathSciNetADSCrossRefGoogle Scholar
  30. R.J. Glauber, Phys. Rev. 131, 2766 (1963).MathSciNetADSCrossRefGoogle Scholar
  31. 21.
    M.O. Scully and M.S. Zubairy, Quantum Optics, Cambridge Univ. Press, Cambridge, UK (1997).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Yanhua Shih
    • 1
  • Yoon-Ho Kim
    • 1
  1. 1.Department of PhysicsUniversity of MarylandBaltimore County, BaltimoreUSA

Personalised recommendations