Mirrorless Oscillation Based on Resonantly Enhanced 4-Wave Mixing: All-Order Analytic Solutions

  • M. Fleischhauer
Conference paper


The phase transition to mirrorless oscillation in resonantly enhanced four-wave mixing in double-Λ systems are studied analytically for the ideal case of infinite lifetimes of ground-state coherences. The stationary susceptibilities are obtained in all orders of the generated fields and analytic solutions of the coupled nonlinear differential equations for the field amplitudes are derived and discussed.


Field Amplitude Electromagnetically Induce Transparency Density Matrix Element Driving Field Pump Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    for a review on EIT see: S. E. Harris, Physics Today 50, 36 (1997)Google Scholar
  2. 2.
    S. E. Harris, J. E. Field, and A. Imamoglu, Phys. Rev. Lett. 64, 1107 (1990)ADSCrossRefGoogle Scholar
  3. 3.
    K. Hakuta, L. Marmet, and B. P. Stoicheff, Phys. Rev. Lett. 66, 596 (1991)ADSCrossRefGoogle Scholar
  4. 4.
    M. Jain, H. Xia, G. Yin, A. J. Merriam und S. E. Harris, Phys. Rev. Lett. 77, 4326 (1996)ADSCrossRefGoogle Scholar
  5. 5.
    H. Schmidt and A. Imamoglu, Opt. Lett. 21, 1936 (1996), A. Imamoglu, H. Schmidt, G. Woods, and M. Deutsch, Phys.Rev.Lett. 79, 1467 (1997)Google Scholar
  6. 6.
    S. E. Harris and L. V. Hau, Phys. Rev. Lett. 82, 4611 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    S. Harris and Y. Yamamoto, Phys.Rev.Lett. 81, 3611 (1998)ADSCrossRefGoogle Scholar
  8. 8.
    M. Werner, and A. Imamoglu, preprint quant-ph/9902005Google Scholar
  9. 9.
    P. R. Hemmer, D. P. Katz, J. Donoghue, M. Cronin-Golomb, M. S Shahriar and P. Kumar, Opt. Lett. 20, 982 (1995)ADSCrossRefGoogle Scholar
  10. 10.
    A. S. Zibrov, M. D. Lukin, and M. O. Scully, Phys.Rev.Lett. 83 (1999), in pressGoogle Scholar
  11. 11.
    M. D. Lukin, P. Hemmer, M. Loeffler, and M. O. Scully, Phys. Rev. Lett. 81, 2675 (1998)ADSCrossRefGoogle Scholar
  12. 12.
    M. D. Lukin, P. R. Hemmer, M. O. Scully, in Adv. At. Mol. and Opt. Physics, 42B, 347 ( Academic Press, Boston, 1999 )Google Scholar
  13. 13.
    H. P. Yuen and J. H. Shapiro, Opt. Lett. 4, 334 (1979)ADSCrossRefGoogle Scholar
  14. 14.
    M. D. Lukin, A. B. Matsko, M. Fleischhauer, M. O. Scully Phys. Rev. Lett. 82, 1847 (1999)ADSCrossRefGoogle Scholar
  15. 15.
    M. Fleischhauer, M. D. Lukin, A. B. Matsko, and M. O. Scully, preprint quantph/9907032Google Scholar
  16. 16.
    M. Abramowitz and I. A. Stegun, “Handbook of Mathematical Functions”, ( Thun, Frankfurt/Main, 1984 )Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • M. Fleischhauer
    • 1
  1. 1.Sektion PhysikUniversität MünchenMünchenGermany

Personalised recommendations