Advertisement

Supermassive Black Hole Accretion and Feedback

  • Andrew KingEmail author
Chapter
Part of the Saas-Fee Advanced Course book series (SAASFEE, volume 48)

Abstract

I review the physics of accretion on to supermassive black holes in galaxy centres, and how this results in feedback affecting the host galaxy.

Notes

Acknowledgements

I thank the organisers, particularly Roland Walter, Nicolas Produit and Lucio Mayer, for making this school so enjoyable, and for valuable comments on the manuscript. I thank the students and my fellow lecturers and all the other participants for their enthusiasm, interest, and their many questions.

References

  1. 1.
    Abramowicz, M.A., Czerny, B., Lasota, J.P., Szuszkiewicz, E.: Slim accretion disks. ApJ 332, 646 (1988)ADSCrossRefGoogle Scholar
  2. 2.
    Assef, R.J., et al.: Half of the most luminous quasars may be obscured: investigating the nature of WISE-selected hot dust-obscured galaxies. ApJ 804, 27. arXiv:1408.1092 [astro-ph.GA] (2015)
  3. 3.
    Balbus, S.A., Hawley, J.F.: A powerful local shear instability in weakly magnetized disks. I. Linear analysis. ApJ 376, 214 (1991)ADSCrossRefGoogle Scholar
  4. 4.
    Bardeen, J.M., Petterson, J.A.: The lense-thirring effect and Accretion disks around Kerr black holes. ApJ 195, L65 (1975)ADSCrossRefGoogle Scholar
  5. 5.
    Barth, A.J., Martini, P., Nelson, C.H., Ho, L.C.: Iron Emission in the z = 6.4 Quasar SDSS J114816.64+525150.3. ApJ 594, L95–L98. arXiv:astro-ph/0308005 [astro-ph] (2003)
  6. 6.
    Bondi, H.: On spherically symmetrical accretion. MNRAS 112, 195 (1952)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Chandrasekhar, S.: Dynamical friction. I. General considerations: the co-efficient of dynamical friction. ApJ 97, 255 (1943)ADSCrossRefGoogle Scholar
  8. 8.
    Cicone, C., et al.: Massive molecular outflows and evidence for AGN feedback from CO observations. A & A 562, A21. arXiv:1311.2595 [astro-ph.CO] (2014)
  9. 9.
    Collin-Souffrin, S., Dumont, A.M.: Line and continuum emission from the outer regions of accretion discs in active galactic nuclei. II. Radial structure of the disc. A & A 229, 292–301 (1990)Google Scholar
  10. 10.
    Costa, T., Sijacki, D., Haehnelt, M.G.: Feedback from active galactic nuclei: energy- versus momentum-driving. MNRAS 444, 2355–2376. arXiv:1406.2691 [astro-ph.GA] (2014)
  11. 11.
    Dehnen, W., King, A.: Black hole foraging: feedback drives feeding. ApJ 777, L28. arXiv:1310.2039 [astrospsph.CO] (2013)
  12. 12.
    Denney, K.D., et al.: A revised broad-line region radius and black hole mass for the narrow-line Seyfert 1 NGC 4051. ApJ 702, 1353–1366. arXiv:0904.0251 [astro-ph.CO] (2009)
  13. 13.
    Dyson, J.E., Williams, D.A.: The Physics of the Interstellar Medium. Bristol Institute of Physics Publishing, Bristol (1997)CrossRefGoogle Scholar
  14. 14.
    European Southern Observatory (2019)Google Scholar
  15. 15.
    Faber, S.M., Jackson, R.E.: Velocity dispersions and mass-to-light ratios for elliptical galaxies. ApJ 204, 668–683 (1976)ADSCrossRefGoogle Scholar
  16. 16.
    Faucher-Giguère, C.-A., Quataert, E.: The physics of galactic winds driven by active galactic nuclei. MNRAS 425, 605–622. arXiv:1204.2547 [astro-ph.CO] (2012)
  17. 17.
    Frank, J., King, A.R., Raine, D.J.: Accretion power in astrophysics (2002)Google Scholar
  18. 18.
    Ghisellini, G., et al.: Chasing the heaviest black holes of jetted active galactic nuclei. MNRAS 405, 387–400. arXiv:0912.0001 [astro-ph.HE] (2010)
  19. 19.
    Hawking, S.W.: Black holes in general relativity. Commun. Math. Phys. 25, 152–166 (1972)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Jahnke, K., Macciò, A.V.: The non-causal origin of the Black-holegalaxy scaling relations. ApJ 734, 92. arXiv:1006.0482 [astro-ph.CO] (2011)
  21. 21.
    King, A.: Black holes, galaxy formation, and the \({\rm M}_{BH}-\sigma \) relation. ApJ 596, L27–L29. arXiv:astro-ph/0308342 [astro-ph] (2003)
  22. 22.
    King, A.: The AGN-starburst connection, galactic superwinds, and \(\text{M}_{BH} - \sigma \). ApJ 635, L121–L123. arXiv:astro-ph/0511034 [astro-ph] (2005)
  23. 23.
    King, A.: The Supermassive Black Hole-Galaxy connection. Space Sci. Rev. 183, 427–451 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    King, A.: How big can a black hole grow? MNRAS 456, L109–L112. arXiv:1511.08502 [astro-ph.GA] (2016)
  25. 25.
    King, A., Muldrew, S.I.: Black hole winds II: Hyper-Eddington winds and feedback. MNRAS 455, 1211–1217. arXiv:1510.01736 [astro-ph.HE] (2016)
  26. 26.
    King, A., Nixon, C.: AGN flickering and chaotic accretion. MNRAS 453, L46–L47. arXiv:1507.05960 [astro-ph.HE] (2015)
  27. 27.
    King, A., Nixon, C.: Black holes in stellar-mass binary systems: expiating original spin? MNRAS 462, 464–467. arXiv:1607.02144 [astro-ph.HE] (2016)
  28. 28.
    King, A., Nixon, C.: Misaligned accretion and jet production. ApJ 857, L7. arXiv:1803.08927 [astro-ph.HE] (2018)
  29. 29.
    King, A., Pounds, K.: Powerful outflows and feedback from active galactic nuclei. ARA & A 53, 115–154. arXiv:1503.05206 [astro-ph.GA] (2015)
  30. 30.
    King, A.R.: Masses, beaming and Eddington ratios in ultraluminous X-ray sources. MNRAS 393, L41–L44. arXiv:0811.1473 [astro-ph] (2009)
  31. 31.
    King, A.R., Lasota, J.P.: Magnetic alignment of rotating black holes and accretion discs. A & A 58, 175–179 (1977)ADSGoogle Scholar
  32. 32.
    King, A.R., Lubow, S.H., Ogilvie, G.I. Pringle, J.E.: Aligning spinning black holes and accretion discs. MNRAS 363, 49–56. arXiv:astro-ph/0507098 [astro-ph] (2005)
  33. 33.
    King, A.R., Pringle, J.E.: Growing supermassive black holes by chaotic accretion. MNRAS 373, L90–L92. arXiv:astro-ph/0609598 [astro-ph] (2006)
  34. 34.
    King, A.R., Pringle, J.E.: Fuelling active galactic nuclei. MNRAS 377, L25–L28. arXiv:astro-ph/0701679 [astro-ph] (2007)
  35. 35.
    King, A.R., Pringle, J.E., Livio, M.: Accretion disc viscosity: how big is alpha? MNRAS 376, 1740–1746. arXiv:astro-ph/0701803 [astro-ph] (2007)
  36. 36.
    King, A.R., Pringle, J.E., Hofmann, J.A.: The evolution of black hole mass and spin in active galactic nuclei. MNRAS 385, 1621–1627. arXiv:0801.1564 [astro-ph] (2008)
  37. 37.
    King, A.R., Pounds, K.A.: Black hole winds. MNRAS 345, 657–659. arXiv:astro-ph/0305541 [astro-ph] (2003)
  38. 38.
    King, A.R., Ritter, H.: Cygnus X-2, super-Eddington mass transfer, and pulsar binaries. MNRAS 309, 253–260. arXiv:astro-ph/9812343 [astro-ph] (1999)
  39. 39.
    King, A.R., Zubovas, K., Power, C.: Large-scale outflows in galaxies. MNRAS 415, L6–L10. arXiv:1104.3682 [astro-ph.GA] (2011)
  40. 40.
    Kinney, A.L., et al.: Jet Directions in seyfert galaxies. ApJ 537, 152–177. arXiv:astro-ph/0002131 [astro-ph] (2000)
  41. 41.
    Kormendy, J., Ho, L.C.: Coevolution (Or Not) of supermassive black holes and host galaxies. ARA & A 51, 511–653. arXiv:1304.7762 [astro-ph.CO] (2013)
  42. 42.
    Kormendy, J., Richstone, D.: Inward bound—the search for supermassive Black Holes in galactic nuclei. ARA & A 33, 581 (1995)Google Scholar
  43. 43.
    Lodato, G., Price, D.J.: On the diffusive propagation of warps in thin accretion discs. MNRAS 405, 1212–1226. arXiv:1002.2973 [astro-ph.HE] (2010)
  44. 44.
    Lynden-Bell, D.: Galactic nuclei as collapsed old quasars. Nature 223, 690–694 (1969)ADSCrossRefGoogle Scholar
  45. 45.
    Lynden-Bell, D., Pringle, J.E.: The evolution of viscous discs and the origin of the nebular variables. MNRAS 168, 603–637 (1974)ADSCrossRefGoogle Scholar
  46. 46.
    Magorrian, J., et al.: The demography of massive dark objects in galaxy centers. AJ 115, 2285–2305. arXiv:astro-ph/9708072 [astro-ph] (1998)
  47. 47.
    Mayer, L.: Super-Eddington accretion; flow regimes and conditions in high-z galaxies. arXiv:1807.06243 [astro-ph.HE] (2018)
  48. 48.
    McQuillin, R.C., McLaughlin, D.E.: Momentum-driven feedback and the M-\(\sigma \) relation in non-isothermal galaxies. MNRAS 423, 2162–2176. arXiv:1204.2082 [astro-ph.CO] (2012)
  49. 49.
    Murray, N., Quataert, E., Thompson, T.A.: ApJ 618, 569 (2005)Google Scholar
  50. 50.
    Nayakshin, S. Two-phase model for black hole feeding and feedback. MNRAS 437, 2404–2411. arXiv:1311.4492 [astro-ph.GA] (2014)
  51. 51.
    Nixon, C., King, A., Price, D., Frank, J.: Tearing up the disk: how black holes accrete. ApJ 757, L24. arXiv:1209.1393 [astro-ph.HE] (2012)
  52. 52.
    Nixon, C.J., King, A.R.: Broken discs: warp propagation in accretion discs. MNRAS 421, 1201–1208. arXiv:1201.1297 [astro-ph.HE] (2012)
  53. 53.
    Ohsuga, K., Mineshige, S., Mori, M., Umemura, M.: Does the slim-disk model correctly consider photon-trapping effects? ApJ 574, 315–324. arXiv:astro-ph/0203425 [astro-ph] (2002)
  54. 54.
    Papaloizou, J.C.B., Pringle, J.E.: The time-dependence of non-planar accretion discs. MNRAS 202, 1181–1194 (1983)ADSCrossRefGoogle Scholar
  55. 55.
    Peng, C.Y.: How mergers may affect the mass scaling relation between gravitationally bound systems. ApJ 671, 1098–1107. arXiv:0704.1860 [astro-ph] (2007)
  56. 56.
    Pontzen, A., Governato, F.: How supernova feedback turns dark matter cusps into cores. MNRAS 421, 3464–3471. arXiv:1106.0499 [astro-ph.CO] (2012)
  57. 57.
    Pounds, K.A., King, A.R.: The shocked outflow in NGC 4051 - momentumdriven feedback, ultrafast outflows and warm absorbers. MNRAS 433, 1369–1377. arXiv:1305.2046 [astro-ph.HE] (2013)
  58. 58.
    Pounds, K.A., Nixon, C.J., Lobban, A., King, A.R.: An ultrafast inow in the luminous Seyfert PG1211+143. MNRAS 481, 1832–1838. arXiv:1808.09373 [astro-ph.HE] (2018)
  59. 59.
    Pounds, K.A., Vaughan, S.: An extended XMM-Newton observation of the Seyfert galaxy NGC 4051 - I. Evidence for a shocked outflow. MNRAS 413, 1251–1263. arXiv:1012.0998 [astro-ph.CO] (2011)
  60. 60.
    Power, C., Zubovas, K., Nayakshin, S., King, A.R.: MNRAS 413, 110 (2011)Google Scholar
  61. 61.
    Richings, A.J., Faucher-Giguère, C.-A.: The origin of fast molecular outflows in quasars: molecule formation in AGN-driven galactic winds. MNRAS 474, 3673–3699. arXiv:1706.03784 [astro-ph.GA] (2018a)
  62. 62.
    Richings, A. J., Faucher-Giguère, C.-A.: Radiative cooling of swept-up gas in AGN-driven galactic winds and its implications for molecular outflows. MNRAS 478, 3100–3119. arXiv:1710.09433 [astro-ph.GA] (2018b)
  63. 63.
    Salpeter, E.E.: Accretion of interstellar matter by massive objects. ApJ 140, 796–800 (1964)ADSCrossRefGoogle Scholar
  64. 64.
    Schawinski, K., Koss, M., Berney, S., Sartori, L. F.: Active galactic nuclei flicker: an observational estimate of the duration of black hole growth phases of 105 yr. MNRAS 451, 2517–2523. arXiv:1505.06733 [astrospsph.GA] (2015)
  65. 65.
    Scheuer, P.A.G., Feiler, R.: The realignment of a black hole misaligned with its accretion disc. MNRAS 282, 291 (1996)ADSCrossRefGoogle Scholar
  66. 66.
    Shakura, N.I., Sunyaev, R.A.: Reprint of 1973A & A....24..337S. Black holes in binary systems. Observational appearance. A & A 500, 33– 51 (1973)Google Scholar
  67. 67.
    Silk, J., Nusser, A.: The Massive-black-hole-velocity-dispersion relation and the Halo Baryon fraction: a case for positive active Galactic nucleus feedback. ApJ 725, 556–560. arXiv:1004.0857 [astro-ph.CO] (2010)
  68. 68.
    Soltan, A.: Masses of quasars. MNRAS 200, 115–122 (1982)ADSCrossRefGoogle Scholar
  69. 69.
    Tombesi, F., et al.: Evidence for ultra-fast outflows in radio-quiet AGNs. I. Detection and statistical incidence of Fe K-shell absorption lines. A & A 521, A57. arXiv:1006.2858 [astro-ph.HE] (2010)
  70. 70.
    Tombesi, F., et al.: Evidence for ultra-fast outflows in radio-quiet active galactic nuclei. II. Detailed photoionization modeling of Fe K-shell absorption lines. ApJ 742, 44. arXiv:1109.2882 [astro-ph.HE] (2011)
  71. 71.
    Tombesi, F., et al.: Wind from the black-hole accretion disk driving a molecular outflow in an active galaxy. Nature 519, 436–438. arXiv:1501.07664 [astro-ph.HE] (2015)
  72. 72.
    Toomre, A.: On the gravitational stability of a disk of stars. ApJ 139, 1217–1238 (1964)ADSCrossRefGoogle Scholar
  73. 73.
    Walker, S.A., Fabian, A.C., Russell, H.R., Sanders, J.S.: The effect of the quasar H1821+643 on the surrounding intracluster medium: revealing the underlying cooling flow. MNRAS 442, 2809–2816. arXiv:1405.7522 [astro-ph.HE] (2014)
  74. 74.
    Willott, C.J., McLure, R.J., Jarvis, M.J.: A 3\(\times 10^{9} \text{ M }_{solar}\) black hole in the quasar SDSS J1148+5251 at z=6.41. ApJ 587, L15–L18. arXiv:astro-ph/0303062 [astro-ph] (2003)
  75. 75.
    Zubovas, K., King, A.: BAL QSOs and extreme UFOs: the Eddington connection. ApJ 769, 51. arXiv:1304.1691 [astro-ph.GA] (2013)
  76. 76.
    Zubovas, K., King, A.: The small observed scale of AGN-driven outflows, and inside-out disc quenching. MNRAS 462, 4055–4066. arXiv:1607.07258 [astro-ph.GA] (2016)
  77. 77.
    Zubovas, K., King, A.R.: The M-\(\sigma \) relation in different environments. MNRAS 426, 2751–2757. arXiv:1208.1380 [astro-ph.GA] (2012)
  78. 78.
    Zubovas, K., King, A.R.: Galaxy-wide outflows: cold gas and star formation at high speeds. MNRAS 439, 400–406. arXiv:1401.0392 [astro-ph.GA] (2014)
  79. 79.
    Zubovas, K., King, A.R., Nayakshin, S.: The Milky Way’s Fermi bubbles: echoes of the last quasar outburst? MNRAS 415, L21–L25. arXiv:1104.5443 [astro-ph.GA] (2011)

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics & AstronomyUniversity of LeicesterLeicesterUK
  2. 2.Astronomical Institute Anton PannekoekUniversity of AmsterdamAmsterdamThe Netherlands
  3. 3.Leiden ObservatoryLeiden UniversityLeidenThe Netherlands

Personalised recommendations