Black Holes Across Cosmic History: A Journey Through 13.8 Billion Years

  • Tiziana Di MatteoEmail author
Part of the Saas-Fee Advanced Course book series (SAASFEE, volume 48)


Massive black holes are fundamental constituents of our cosmos, from the Big Bang to today. Understanding their formation at cosmic dawn, their growth, and the emergence of the first, rare quasars in the early Universe remains one of our greatest theoretical and observational challenges. Hydrodynamic cosmological simulations self-consistently combine the processes of structure formation at cosmological scales with the physics of smaller, galaxy scales. They capture our most realistic understanding of massive black holes and their connection to galaxy formation and have become the primary avenue for theoretical research in this field. The space-based gravitational wave telescope LISA will open up new investigations into the dynamical processes involving massive black holes. Multi-messenger astrophysics brings new exciting prospects for tracing the origin, growth and merger history of massive black holes across cosmic ages.


  1. 1.
    Carr, B., Kühnel, F., Sandstad, M.: Primordial black holes as dark matter. Phys. Rev. D 94, 083504 (2016).
  2. 2.
    Chapline, G.F.: Cosmological effects of primordial black holes. Nature 253, 251–252 (1975)ADSCrossRefGoogle Scholar
  3. 3.
    Garcia-Bellido, J., Linde, A., Wands, D.: Density perturbations and black hole formation in hybrid ination. Phys. Rev. D 54, 6040–6058 (1996). arXiv:astro-ph/9605094 [astro-ph]
  4. 4.
    Garcia-Bellido, J., Clesse, S.: Black holes from the beginning of time. Sci. Am. 317, 38–43 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    Carr, B.J., Rees, M.J.: How large were the first pregalactic objects? MNRAS 206, 315–325 (1984)ADSCrossRefGoogle Scholar
  6. 6.
    Bird, S., et al.: Did LIGO detect dark matter? Phys. Rev. Lett. 116, 201301 (2006). arXiv:1603.00464 [astro-ph.CO]ADSCrossRefGoogle Scholar
  7. 7.
    Hawking, S.W.: Particle creation by black holes. Commun. Math. Phys. 43, 199–220 (1975)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Crawford, M., Schramm, D.N.: Spontaneous generation of density perturbations in the early Universe. Nature 298, 538–540 (1982)ADSCrossRefGoogle Scholar
  9. 9.
    Hawking, S.W.: Black holes from cosmic strings. Phys. Lett. B 231, 237–239 (1989)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Polnarev, A., Zembowicz, R.: Formation of primordial black holes by cosmic strings. Phys. Rev. D 43, 1106–1109 (1991)ADSCrossRefGoogle Scholar
  11. 11.
    Clesse, S., Garcia-Bellido, J.: Massive primordial black holes from hybrid ination as dark matter and the seeds of galaxies. Phys. Rev. D 92, 023524 (2015). arXiv:1501.07565 [astro-ph.CO]ADSCrossRefGoogle Scholar
  12. 12.
    Cirelli, M.: Dark matter indirect searches: charged cosmic rays. J. Phys. Conf. Ser. 718, 022005 (2016)CrossRefGoogle Scholar
  13. 13.
    Cirelli, M., Taoso, M.: Updated galactic radio constraints on dark matter. J. Cosmol. Astro-Part. Phys. 041, (2016). arXiv:1604.06267 [hep-ph]
  14. 14.
    Ali-Haimoud, Y., Kovetz, E.D., Kamionkowski, M.: Merger rate of primordial black-hole binaries. Phys. Rev. D 96, 123523 (2017). arXiv:1709.06576 [astro-ph.CO]ADSCrossRefGoogle Scholar
  15. 15.
    Kovetz, E.D.: Probing primordial black hole dark matter with gravitational waves. Phys. Rev. Lett. 119, 131301 (2017). arXiv:1705.09182 [astro-ph.CO]ADSCrossRefGoogle Scholar
  16. 16.
    Regan, J.A., Haehnelt, M.G.: Pathways to massive black holes and compact star clusters in pre-galactic dark matter haloes with virial temperatures \(>\)10000K. MNRAS 396, 343–353 (2009). arXiv:0810.2802
  17. 17.
    Abel, T., Bryan, G.L., Norman, M.L.: The formation of the first star in the universe. Science 295, 93–98 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    Johnson, J.L., Bromm, V.: The aftermath of the first stars: massive black holes. MNRAS 374, 1557–1568 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    Madau, P., Rees, M.J.: Massive black holes as population III remnants. ApJ 551, L27–L30 (2001). arXiv:astro-ph/0101223ADSCrossRefGoogle Scholar
  20. 20.
    Heger, A., Woosley, S.E., Fryer, C.L., Langer, N.: Massive Star Evolution Through the Ages in From Twilight to Highlight: The Physics of Supernovae, Hillebrandt, W., Leibundgut, B. (eds.), vol. 3 (2003). arXiv:astro-ph/0211062
  21. 21.
    Begelman, M.C., Volonteri, M., Rees, M.J.: Formation of supermassive black holes by direct collapse in pre-galactic haloes. MNRAS 370, 289–298 (2006). arXiv:astro-ph/0602363ADSCrossRefGoogle Scholar
  22. 22.
    Ferrara, A., Salvadori, S., Yue, B., Schleicher, D.: Initial mass function of intermediate-mass black hole seeds. MNRAS 443, 2410–2425 (2014). arXiv:1406.6685ADSCrossRefGoogle Scholar
  23. 23.
    Latif, M.A., Schleicher, D.R.G., Schmidt, W., Niemeyer, J.: Black hole formation in the early Universe. MNRAS 433, 1607–1618 (2013). arXiv: 1304.0962 [astro-ph.CO]
  24. 24.
    Lodato, G., Natarajan, P.: Supermassive black hole formation during the assembly of pre-galactic discs. MNRAS 371, 1813–1823 (2006). arXiv:astroph/0606159
  25. 25.
    Rees, M.J.: Accretion and the quasar phenomenon. Phys. Sci. 17, 193–200 (1978)ADSCrossRefGoogle Scholar
  26. 26.
    Clark, P.C., et al.: The formation and fragmentation of disks around primordial protostars. Science 331, 1040 (2011). arXiv:1101.5284 [astro-ph.CO]ADSCrossRefGoogle Scholar
  27. 27.
    Schneider, R., Omukai, K., Inoue, A.K., Ferrara, A.: Fragmentation of star-forming clouds enriched with the first dust. MNRAS 369, 1437–1444 (2006). arXiv:astro-ph/0603766ADSCrossRefGoogle Scholar
  28. 28.
    Begelman, M.C., Rees, M.J.: The fate of dense stellar systems. MNRAS 185, 847–860 (1978)ADSCrossRefGoogle Scholar
  29. 29.
    Devecchi, B., Volonteri, M.: Formation of the first nuclear clusters and massive black holes at high redshift. ApJ 694, 302–313 (2009). arXiv:0810.1057ADSCrossRefGoogle Scholar
  30. 30.
    Yajima, H., Khochfar, S.: The role of stellar relaxation in the formation and evolution of the first massive black holes. MNRAS 457, 2423–2432 (2016). arXiv:1507.06701
  31. 31.
    Volonteri, M., Bellovary, J.: Black holes in the early Universe. Rep. Prog. Phys. 75, 124901 (2012). arXiv:1209.2243ADSCrossRefGoogle Scholar
  32. 32.
    Turk, M.J., Abel, T., O’Shea, B.: The formation of population III binaries from cosmological initial conditions. Science 325, 601 (2009). arXiv:0907.2919 [astro-ph.CO]ADSCrossRefGoogle Scholar
  33. 33.
    Trenti, M., Stiavelli, M., Michael Shull, J.: Metal-free gas supply at the edge of reionization: late-epoch population III star formation. ApJ 700, 1672–1679 (2009). arXiv:0905.4504 [astro-ph.CO]ADSCrossRefGoogle Scholar
  34. 34.
    Greif, T.H., et al.: Formation and evolution of primordial protostellar systems. MNRAS 424, 399–415 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    Hirano, S., et al.: One hundred first stars: protostellar evolution and the final masses. ApJ 781, 60 (2014). arXiv:1308.4456 [astro-ph.CO]ADSCrossRefGoogle Scholar
  36. 36.
    Latif, M.A., Schleicher, D.R.G., Spaans, M.: The implications of dust for high-redshift protogalaxies and the formation of binary disks. A & A 540, A101 (2012). arXiv:1110.4256 [astro-ph.CO]ADSCrossRefGoogle Scholar
  37. 37.
    Regan, J.A., et al.: Rapid formation of massive black holes in close proximity to embryonic protogalaxies. Nat. Astron. 1, 0075 (2017). arXiv:1703.03805 [astro-ph.GA]CrossRefGoogle Scholar
  38. 38.
    Wise, J.H., et al. Formation of massive black holes in rapidly growing pregalactic gas clouds. Nature 566, 85–88 (2019). arXiv:1901.07563
  39. 39.
    Hirano, S., Hosokawa, T., Yoshida, N., Kuiper, R.: Supersonic gas Streams enhance the formation of massive black holes in the early universe. Science 357, 1375–1378 (2017). arXiv:1709.09863 [astro-ph.CO]ADSMathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Chon, S., Hosokawa, T., Yoshida, N.: Radiation hydrodynamics simulations of the formation of direct-collapse supermassive stellar systems. MNRAS 475, 4104–4121 (2018). arXiv:1711.05262 [astro-ph.GA]ADSCrossRefGoogle Scholar
  41. 41.
    Mayer, L., Kazantzidis, S., Escala, A., Callegari, S.: Direct formation of supermassive black holes via multi-scale gas inows in galaxy mergers. Nature 466, 1082–1084 (2010)ADSCrossRefGoogle Scholar
  42. 42.
    Mayer, L., Bonoli, S.: The route to massive black hole formation via merger-driven direct collapse: a review. Rep. Progr. Phys. 82, 29 (2019). arXiv:1803.06391
  43. 43.
    Mayer, L., et al.: Direct formation of supermassive black holes in metalenriched gas at the heart of high-redshift galaxy mergers. ApJ 466, 51–65 (2015). arXiv:1411.5683ADSCrossRefGoogle Scholar
  44. 44.
    Woods, T., et al.: Titans of the Early Universe: The Prato Statement on the Origin of the First Supermassive Black Holes. Publications of the Astronomical Society of Australia, vol. 38 (2019). arXiv:eprintarXiv:1810.12310
  45. 45.
    Ba nados, E., et al.: An 800-million-solar-mass black hole in a significantly neutral Universe at a redshift of 7.5. Nature 553, 473–476 (2018). arXiv:1712.01860
  46. 46.
    Fan, X., et al.: The first luminous quasars and their host galaxies (2019). arXiv e-prints. arXiv:1903.04078
  47. 47.
    Fan, X., et al.: A survey of \(z > 5.7\) quasars in the sloan digital sky survey. IV. Discovery of seven additional quasars. AJ 131, 1203–1209 (2006). arXiv:astro-ph/0512080
  48. 48.
    Spergel, D.N., et al.: Three-year Wilkinson microwave anisotropy probe (WMAP) observations: implications for cosmology. ApJS 170, 377–408 (2007). arXiv:astro-ph/0603449ADSCrossRefGoogle Scholar
  49. 49.
    Crain, R.A., et al.: The EAGLE simulations of galaxy formation: calibration of subgrid physics and model variations. MNRAS 450, 1937–1961 (2015). arXiv:1501.01311
  50. 50.
    Di Matteo, T., Croft, R.A.C., Feng, Y., Waters, D., Wilkins, S.: The origin of the most massive black holes at high-z: BlueTides and the next quasar frontier. MNRAS 467, 4243–4251 (2017). arXiv:1606.08871
  51. 51.
    Khandai, N., et al.: The Massive black-II simulation: the evolution of haloes and galaxies to z 0. MNRAS 450, 1349–1374 (2015). arXiv:1402.0888ADSCrossRefGoogle Scholar
  52. 52.
    Vogelsberger, M., et al.: Introducing the Illustris Project: simulating the coevolution of dark and visible matter in the Universe. MNRAS 444, 1518–1547 (2014). arXiv:1405.2921ADSCrossRefGoogle Scholar
  53. 53.
    Di Matteo, T., et al.: Cold flows and the first quasars. ApJ 745, L29 (2012). arXiv:1107.1253 [astro-ph.CO]ADSCrossRefGoogle Scholar
  54. 54.
    Springel, V.: The cosmological simulation code GADGET-2. MNRAS 364, 1105–1134 (2005)ADSCrossRefGoogle Scholar
  55. 55.
    Feng, Y., et al.: The formation of milky way-mass disk galaxies in the first 500 million years of a cold dark matter universe. ApJ 808, L17 (2015). arXiv:1504.06618
  56. 56.
    Barnes, J., Hut, P.: A hierarchical O(N log N) force-calculation algorithm. Nature 324, 446–449 (1986)ADSCrossRefGoogle Scholar
  57. 57.
    Hopkins, P.F., et al.: The evolution in the faint-end slope of the quasar luminosity function. ApJ 639, 700–709 (2006). arXiv:astro-ph/0508299ADSCrossRefGoogle Scholar
  58. 58.
    Springel, V.: E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh. MNRAS 401, 791–851 (2010). arXiv:0901.4107 [astro-ph.CO]ADSCrossRefGoogle Scholar
  59. 59.
    Bauer, A., Springel, V.: Subsonic turbulence in smoothed particle hydrodynamics and moving-mesh simulations. MNRAS 3102, (2012). arXiv:1109.4413 [astro-ph.CO]
  60. 60.
    Genel, S., et al.: Following the ow: tracer particles in astrophysical uid simulations. MNRAS 435, 1426–1442 (2013). arXiv:1305.2195 [astro-ph.IM]ADSCrossRefGoogle Scholar
  61. 61.
    Nelson, D., et al.: Moving mesh cosmology: tracing cosmological gas accretion. MNRAS 429, 3353–3370 (2013). arXiv:1301.6753 [astro-ph.CO]ADSCrossRefGoogle Scholar
  62. 62.
    Sijacki, D., Vogelsberger, M., Kereš, D., Springel, V., Hernquist, L.: Moving mesh cosmology: the hydrodynamics of galaxy formation. MNRAS 424, 2999–3027 (2012). arXiv:1109.3468 [astro-ph.CO]ADSCrossRefGoogle Scholar
  63. 63.
    Torrey, P., Vogelsberger, M., Sijacki, D., Springel, V., Hernquist, L.: Moving-mesh cosmology: properties of gas discs. MNRAS 427, 2224–2238 (2012). arXiv:1110.5635 [astro-ph.CO]ADSCrossRefGoogle Scholar
  64. 64.
    Vogelsberger, M., Sijacki, D., Kereš, D., Springel, V., Hernquist, L.: Moving mesh cosmology: numerical techniques and global statistics. MNRAS 425, 3024–3057 (2012). arXiv:1109.1281 [astro-ph.CO]ADSCrossRefGoogle Scholar
  65. 65.
    Vogelsberger, M.: Cosmological simulations of dark matter in APS. Meeting Abstr. R10, 003 (2015)Google Scholar
  66. 66.
    Di Matteo, T., Springel, V., Hernquist, L.: Energy input from quasars regulates the growth and activity of black holes and their host galaxies. Nature 433, 604–607 (2005)ADSCrossRefGoogle Scholar
  67. 67.
    Springel, V., et al.: Simulations of the formation, evolution and clustering of galaxies and quasars. Nature 435, 629–636 (2005)ADSCrossRefGoogle Scholar
  68. 68.
    DeGraf, C., Sijacki, D.: Black hole clustering and duty cycles in the Illustris simulation. MNRAS 466, 3331–3343 (2017). arXiv:1609.06727
  69. 69.
    Sijacki, D., et al.: The Illustris simulation: the evolving population of black holes across cosmic time. MNRAS 452, 575–596 (2015). arXiv:1408.6842ADSCrossRefGoogle Scholar
  70. 70.
    Weinberger, R., et al.: Simulating galaxy formation with black hole driven thermal and kinetic feedback. MNRAS 465, 3291–3308 (2017). arXiv:1607.03486
  71. 71.
    Genel, S., et al.: Introducing the Illustris project: the evolution of galaxy populations across cosmic time. MNRAS 445, 175–200 (2014). arXiv:1405.3749ADSCrossRefGoogle Scholar
  72. 72.
    Marinacci, F., et al.: First results from the IllustrisTNG simulations: radio haloes and magnetic fields (2017). ArXiv e-prints. arXiv:1707.03396
  73. 73.
    Naiman, J.P., et al.: First results from the IllustrisTNG simulations: a tale of two elements - chemical evolution of magnesium and europium. MNRAS 477, 1206–1224 (2018). arXiv:1707.03401
  74. 74.
    Pillepich, A., et al.: Simulating galaxy formation with the IllustrisTNG model. MNRAS 473, 4077–4106 (2018). arXiv:1703.02970
  75. 75.
    Springel, V., et al.: First results from the IllustrisTNG simulations: matter and galaxy clustering. MNRAS 475, 676–698 (2018). arXiv:1707.03397
  76. 76.
    Bhowmick, A.K., Di Matteo, T., Feng, Y., Lanusse, F.: The clustering of \(z >\) 7 galaxies: predictions from the BLUETIDES simulation. MNRAS 474, 5393–5405 (2018). arXiv:1707.02312
  77. 77.
    Huang, K.-W., Di Matteo, T., Bhowmick, A.K., Feng, Y., Ma, C.-P.: BLUETIDES simulation: establishing black hole-galaxy relations at highredshift. MNRAS (2018). arXiv:1801.04951
  78. 78.
    Ni, Y., Di Matteo, T., Feng, Y., Croft, R.A.C., Tenneti, A.: Gas outows from the z = 7.54 quasar: predictions from the BLUETIDES simulation. MNRAS 481, 4877–4884 (2018). arXiv:1806.00184
  79. 79.
    Tenneti, A., Di Matteo, T., Croft, R., Garcia, T., Feng, Y.: The descendants of the first quasars in the BlueTides simulation. MNRAS 474, 597–603 (2018). arXiv:1708.03373
  80. 80.
    Wilkins, S.M., et al.: The properties of the first galaxies in the BlueTides simulation. MNRAS 469, 2517–2530 (2017). arXiv:1704.00954
  81. 81.
    Feng, Y., et al.: The BlueTides simulation: first galaxies and eionization. MNRAS 455, 2778–2791 (2016). arXiv:1504.06619
  82. 82.
    Gebhardt, K., et al.: A relationship between nuclear black hole mass and galaxy velocity dispersion. ApJ 539, L13–L16 (2000)ADSCrossRefGoogle Scholar
  83. 83.
    Gültekin, K., et al.: The M-\(_\sigma \) and M-L relations in galactic bulges, and determinations of their intrinsic scatter. ApJ 698, 198–221 (2009). arXiv:0903.4897 [astro-ph.GA]CrossRefADSGoogle Scholar
  84. 84.
    Häring, N., Rix, H.-W.: On the black hole mass-bulge mass relation. ApJ 604, L89–L92 (2004). arXiv:astro-ph/0402376ADSCrossRefGoogle Scholar
  85. 85.
    Kormendy, J., Ho, L.C.: Coevolution (Or Not) of supermassive black holes and host galaxies. ARA & A 51, 511–653 (2013). arXiv:1304.7762 [astro-ph.CO]ADSCrossRefGoogle Scholar
  86. 86.
    Magorrian, J., et al.: The demography of massive dark objects in galaxy centers. AJ 115, 2285–2305 (1998)ADSCrossRefGoogle Scholar
  87. 87.
    McConnell, N.J., Ma, C.-P.: Revisiting the scaling relations of black hole masses and host galaxy properties. ApJ 764, 184 (2013). arXiv:1211.2816ADSCrossRefGoogle Scholar
  88. 88.
    Reines, A.E., Volonteri, M.: Relations between central black hole mass and total galaxy stellar mass in the local universe. ApJ 813, 82 (2015). arXiv:1508.06274
  89. 89.
    Tremaine, S., et al.: The slope of the black hole mass versus velocity dispersion correlation. ApJ 574, 740–753 (2002)ADSCrossRefGoogle Scholar
  90. 90.
    Bower, R.G., et al.: Breaking the hierarchy of galaxy formation. MNRAS 370, 645–655 (2006). arXiv:astro-ph/0511338ADSCrossRefGoogle Scholar
  91. 91.
    Ciotti, L., Ostriker, J.P., Proga, D.: Feedback from central black holes in elliptical galaxies. I. Models with either radiative or mechanical feedback but not both. ApJ 699, 89–104 (2009). arXiv:0901.1089 [astro-ph.GA]
  92. 92.
    Croton, D.J., et al.: The many lives of active galactic nuclei: cooling ows, black holes and the luminosities and colours of galaxies. MNRAS 365, 11–28 (2006)ADSCrossRefGoogle Scholar
  93. 93.
    Di Matteo, T., Colberg, J., Springel, V., Hernquist, L., Sijacki, D.: Direct cosmological simulations of the growth of black holes and galaxies. ApJ 676, 33–53 (2008)ADSCrossRefGoogle Scholar
  94. 94.
    King, A.: Black Holes, Galaxy Formation, and the \({\rm M}_{BH}-\sigma \) Relation. ApJ 596, L27–L29 (2003)CrossRefADSGoogle Scholar
  95. 95.
    Silk, J., Rees, M.J.: 331, L1–L4 (1998)Google Scholar
  96. 96.
    Hirschmann, M., et al.: On the evolution of the intrinsic scatter in black hole versus galaxy mass relations. MNRAS 407, 1016–1032 (2010). arXiv:1005.2100 [astro-ph.GA]ADSCrossRefGoogle Scholar
  97. 97.
    Jahnke, K., Macció, A.V.: The non-causal origin of the black- holegalaxy scaling relations. ApJ 734, 92 (2011). arXiv:1006.0482 [astro-ph.CO]ADSCrossRefGoogle Scholar
  98. 98.
    Oesch, P.A., et al.: A remarkably luminous galaxy at z = 11.1 measured with hubble space telescope grism spectroscopy. ApJ 819, 129 (2016). arXiv:1603.00461
  99. 99.
    Waters, D., Di Matteo, T., Feng, Y., Wilkins, S. M., Croft, R.A.C.: Forecasts for the WFIRST high latitude survey using the BlueTides simulation. MNRAS 463, 3520–3530 (2016). arXiv:1605.05670
  100. 100.
    Waters, D., et al.: Monsters in the dark: predictions for luminous galaxies in the early Universe from the BLUETIDES simulation. MNRAS 461, L51–L55 (2016). arXiv:1604.00413
  101. 101.
    Feng, Y., Di Matteo, T., Croft, R., Khandai, N.: High-redshift supermassive black holes: accretion through cold ows. MNRAS 440, 1865–1879 (2014). arXiv:1312.1391ADSCrossRefGoogle Scholar
  102. 102.
    DeGraf, C., et al.: Scaling relations between black holes and their host galaxies: comparing theoretical and observational measurements, and the impact of selection effects. MNRAS 454, 913–932 (2015). arXiv:1412.4133ADSCrossRefGoogle Scholar
  103. 103.
    DeGraf, C., et al.: Early black holes in cosmological simulations: luminosity functions and clustering behaviour. MNRAS 424, 1892–1898 (2012). arXiv:1107.1254 [astro-ph.CO]ADSCrossRefGoogle Scholar
  104. 104.
    Giallongo, E., et al.: Faint AGNs at \(z >\) 4 in the CANDELS GOODS-S field: looking for contributors to the reionization of the Universe. A&A 578, A83 (2015). arXiv:1502.02562
  105. 105.
    Haiman, Z., Hui, L.: Constraining the lifetime of quasars from their spatial clustering. ApJ 547, 27–38 (2001). arXiv:astro-ph/0002190ADSCrossRefGoogle Scholar
  106. 106.
    Martini, P., Weinberg, D.H.: Quasar clustering and the lifetime of quasars. ApJ 547, 12–26 (2001). arXiv:astro-ph/0002384ADSCrossRefGoogle Scholar
  107. 107.
    Zhao, G.-B., Li, B., Koyama, K.: N-body simulations for f(R) gravity using a self-adaptive particle-mesh code. Phys. Rev. D 83, 044007 (2011). arXiv:1011.1257 [astro-ph.CO]ADSCrossRefGoogle Scholar
  108. 108.
    Semboloni, E., Hoekstra, H., Schaye, J., van Daalen, M.P., McCarthy, I.G.: Quantifying the effect of baryon physics on weak lensing tomography. MNRAS 417, 2020–2035 (2011). arXiv:1105.1075 [astro-ph.CO]ADSCrossRefGoogle Scholar
  109. 109.
    Tenneti, A., Mandelbaum, R., Di Matteo, T.: Intrinsic alignments of disk and elliptical galaxies in the MassiveBlack-II and Illustris simulations (2015). ArXiv e-prints. arXiv:1510.07024
  110. 110.
    Amaro-Seoane, P., et al.: Low-frequency gravitational-wave science with eLISA/NGO. Class. Quantum Grav. 29, 124016 (2012). arXiv:1202.0839 [gr-qc]ADSCrossRefGoogle Scholar
  111. 111.
    Amaro-Seoane, P., et al.: eLISA: Astrophysics and cosmology in the millihertz regime. GW Notes 6, 4–110 (2013). arXiv:1201.3621 [astro-ph.CO]Google Scholar
  112. 112.
    Enoki, M., Inoue, K.T., Nagashima, M., Sugiyama, N.: Gravitational waves from supermassive black hole coalescence in a hierarchical galaxy formation model. ApJ 615, 19–28 (2004). arXiv:astro-ph/0404389ADSCrossRefGoogle Scholar
  113. 113.
    Klein, A., et al.: Science with the space-based interferometer eLISA: Supermassive black hole binaries. Phys. Rev. D 93, 024003 (2016). arXiv:1511.05581 [gr-qc]ADSCrossRefGoogle Scholar
  114. 114.
    Koushiappas, S.M., Zentner, A.R.: Testing Models of Supermassive Black Hole Seed Formation through GravityWaves. ApJ 639, 7–22 (2006). arXiv:astro-ph/0503511ADSCrossRefGoogle Scholar
  115. 115.
    Micic, M., Holley-Bockelmann, K., Sigurdsson, S., Abel, T.: Supermassive black hole growth and merger rates from cosmological N-body simulations. MNRAS 380, 1533–1540 (2007). arXiv:astro-ph/0703540ADSCrossRefGoogle Scholar
  116. 116.
    Sesana, A., Gair, J., Mandel, I., Vecchio, A.: Observing gravitational waves from the first generation of black holes. ApJ 698, L129–L132 (2009). arXiv:0903.4177 [astro-ph.CO]ADSCrossRefGoogle Scholar
  117. 117.
    Wyithe, J.S.B., Loeb, A.: Low-frequency gravitational waves from massive black hole binaries: predictions for LISA and pulsar timing arrays. ApJ 590, 691–706 (2003). arXiv:astro-ph/0211556ADSCrossRefGoogle Scholar
  118. 118.
    Colpi, M., Dotti, M.: Massive Binary Black Holes in the Cosmic Landscape. Adv. Sci. Lett. 4, 181–203 (2011). arXiv:0906.4339CrossRefGoogle Scholar
  119. 119.
    Mayer, L.: Massive black hole binaries in gas-rich galaxy mergers; multiple regimes of orbital decay and interplay with gas inows. Class. Quantum Grav. 30, 244008 (2013). arXiv:1308.0431ADSzbMATHCrossRefGoogle Scholar
  120. 120.
    Colpi, M.: Massive binary black holes in galactic nuclei and their path to coalescence. Space Sci. Rev. 183, 189–221 (2014). arXiv:1407.3102ADSCrossRefGoogle Scholar
  121. 121.
    Snyder, G.F., et al.: Galaxy morphology and star formation in the Illustris Simulation at z = 0. MNRAS 454, 1886–1908 (2015). ISSN: 0035-8711.
  122. 122.
    Snyder, G.F., et al.: Diverse structural evolution at \(z >\) 1 in cosmologically simulated gal axies. MNRAS 451, 4290–4310 (2015). ISSN:0035-8711.
  123. 123.
    Jonsson, P.: SUNRISE: polychromatic dust radiative transfer\(\ldots \). MNRAS 372, 2–20 (2006)CrossRefADSGoogle Scholar
  124. 124.
    Turk, M.J., et al.: yt: A multi-code analysis toolkit for astrophysical simulation data. ApJS 192, 9 (2011). arXiv:1011.3514 [astro-ph.IM]ADSCrossRefGoogle Scholar
  125. 125.
    Pfister, H., et al.: The birth of a supermassive black hole binary. MNRAS 471, 3646–3656 (2017). arXiv:1706.04010
  126. 126.
    Bowen, D.B., et al.: Quasi-periodic behavior of mini-disks in binary black holes approaching merger. ApJ 853, L17 (2018). arXiv:1712.05451 [astro-ph.HE]ADSCrossRefGoogle Scholar
  127. 127.
    Farris, B.D., Duffell, P., MacFadyen, A.I., Haiman, Z.: Characteristic signatures in the thermal emission from accreting binary black holes. MNRAS 446, L36–L40 (2015). arXiv:1406.0007 [astro-ph.HE]ADSCrossRefGoogle Scholar
  128. 128.
    Lousto, C.O., Zlochower, Y., Campanelli, M.: Modeling the black hole merger of QSO 3C 186. ApJ 841, L28 (2017). arXiv:1704.00809

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.McWilliams Center for CosmologyCarnegile Mellon UniversityPittsburghUSA
  2. 2.School of PhysicsThe University of MelbourneVICAustralia

Personalised recommendations