Advertisement

Dewetting and decomposing films of simple and complex liquids

  • Uwe Thiele
Chapter
  • 1.5k Downloads
Part of the CISM Courses and Lectures book series (CISM, volume 538)

Abstract

We provide a brief account of recent studies of dewetting films of simple and some complex liquids. First, we review basic models for dewetting onelayer films of simple liquids as they are often employed as reference case for studies of simple liquids in more complex situations or of complex liquids. Then we discuss films of binary mixtures that may undergo dewetting and decomposition processes in parallel, assuming that the films first decompose into stratified (layered) films before they evolve lateral structures. Such a setting is described employing a longwave sharpinterface two-layer model. We also use a onedomain diffuse interface model to analyse the process. After describing the linear stability of stratified films in both cases we lay out some advantages and disadvantages of the two models. We conclude by mentioning some other cases of films of complex liquids, providing references for further study and discussing future challenges.

Keywords

Free Surface Binary Mixture Linear Stability Solid Substrate Marangoni Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. V. S. Ajaev. Spreading of thin volatile liquid droplets on uniformly heated surfaces. J. Fluid Mech., 528:279–296, 2005.MathSciNetzbMATHCrossRefGoogle Scholar
  2. D. M. Anderson, G. B. McFadden, and A. A. Wheeler. Diffuse-interface methods in fluid mechanics. Ann. Rev. Fluid Mech., 30:139–165, 1998. doi: 10.1146/annurev.fluid.30.1.139.MathSciNetCrossRefGoogle Scholar
  3. A. J. Archer, M. J. Robbins, and U. Thiele. Dynamical density functional theory for the dewetting of evaporating thin films of nanoparticle suspensions exhibiting pattern formation. Phys. Rev. E, 81(2):021602, 2010. doi: 10.1103/PhysRevE.81.021602.CrossRefGoogle Scholar
  4. D. Bandyopadhyay, R. Gulabani, and A. Sharma. Stability and dynamics of bilayers. Ind. Eng. Chem. Res., 44:1259–1272, 2005.CrossRefGoogle Scholar
  5. D. Bandyopadhyay, A. Sharma, U. Thiele, and P. D. S. Reddy. Electric field induced interfacial instabilities and morphologies of thin viscous and elastic bilayers. Langmuir, 25:9108–9118, 2009. doi: 10.1021/la900635f.CrossRefGoogle Scholar
  6. F. R. S. Batchelor. An Introduction to Fluid Dynamics. University Press, Cambridge, 2000.CrossRefGoogle Scholar
  7. J. Becker, G. Grün, R. Seemann, H. Mantz, K. Jacobs, K. R. Mecke, and R. Blossey. Complex dewetting scenarios captured by thin-film models. Nat. Mater., 2:59–63, 2003.CrossRefGoogle Scholar
  8. P. Beltrame and U. Thiele. Time integration and steady-state continuation method for lubrication equations. SIAM J. Appl. Dyn. Syst., 9:484–518, 2010. doi: 10.1137/080718619.MathSciNetzbMATHCrossRefGoogle Scholar
  9. P. Beltrame, P. Hänggi, and U. Thiele. Depinning of three-dimensional drops from wettability defects. Europhys. Lett., 86:24006, 2009. doi: 10.1209/0295-5075/86/24006.CrossRefGoogle Scholar
  10. P. Beltrame, E. Knobloch, P. Hänggi, and U. Thiele. Rayleigh and depinning instabilities of forced liquid ridges on heterogeneous substrates. Phys. Rev. E, 83:016305, 2011. doi: 10.1103/PhysRevE.83.016305.CrossRefGoogle Scholar
  11. D. J. Benney. Long waves on liquid films. J. Math. & Phys., 45:150–155, 1966.MathSciNetzbMATHGoogle Scholar
  12. M. Bestehorn and K. Neuffer. Surface patterns of laterally extended thin liquid films in three dimensions. Phys. Rev. Lett., 87:046101, 2001. doi: 10.1103/PhysRevLett.87.046101.CrossRefGoogle Scholar
  13. M. Böltau, S. Walheim, J. Mlynek, G. Krausch, and U. Steiner. Surfaceinduced structure formation of polymer blends on patterned substrates. Nature, 391:877–879, 1998.CrossRefGoogle Scholar
  14. D. Bonn, J. Eggers, J. Indekeu, J. Meunier, and E. Rolley. Wetting and spreading. Rev. Mod. Phys., 81:739–805, 2009. doi: 10.1103/RevMod-Phys.81.739.CrossRefGoogle Scholar
  15. W. Boos and A. Thess. Cascade of structures in long-wavelength Marangoni instability. Phys. Fluids, 11:1484–1494, 1999.MathSciNetzbMATHCrossRefGoogle Scholar
  16. M. S. Borgas and J. B. Grotberg. Monolayer flow on a thin film (lung application). J. Fluid Mech., 193:151–170, 1988.zbMATHCrossRefGoogle Scholar
  17. F. Bribesh, L. Frastia, and U. Thiele. 2011. (in preparation).Google Scholar
  18. M. Brinkmann and R. Lipowsky. Wetting morphologies on substrates with striped surface domains. J. Appl. Phys., 92:4296–4306, 2002.CrossRefGoogle Scholar
  19. J. M. Burgess, A. Juel, W. D. McCormick, J. B. Swift, and H. L. Swinney. Suppression of dripping from a ceiling. Phys. Rev. Lett., 86:1203–1206, 2001.CrossRefGoogle Scholar
  20. J. W. Cahn. Phase separation by spinodal decomposition in isotropic systems. J. Chem. Phys., 42:93–99, 1965.CrossRefGoogle Scholar
  21. N. Clarke. Instabilities in thin-film binary mixtures. Eur. Phys. J. E, 14: 207–210, 2004.CrossRefGoogle Scholar
  22. N. Clarke. Toward a model for pattern formation in ultrathin-film binary mixtures. Macromolecules, 38:6775–6778, 2005.CrossRefGoogle Scholar
  23. B. P. Cook, A. L. Bertozzi, and A. E. Hosoi. Shock solutions for particleladen thin films. SIAM J. Appl. Math., 68:760–783, 2008. doi: 10.1137/060677811.MathSciNetzbMATHCrossRefGoogle Scholar
  24. R. V. Craster and O. K. Matar. Dynamics and stability of thin liquid films. Rev. Mod. Phys., 81:1131–1198, 2009. doi: 10.1103/RevMod-Phys.81.1131.CrossRefGoogle Scholar
  25. L. J. Cummings. Evolution of a thin film of nematic liquid crystal with anisotropic surface energy. Eur. J. Appl. Math., 15:651–677, 2004.MathSciNetzbMATHCrossRefGoogle Scholar
  26. M. O. David, G. Reiter, T. Sitthai, and J. Schultz. Deformation of a glassy polymer film by long-range intermolecular forces. Langmuir, 14:5667–5672, 1998.CrossRefGoogle Scholar
  27. J. De Coninck and T. D. Blake. Wetting and molecular dynamics simulations of simple liquids. Ann. Rev. Mater. Res., 38:1–22, 2008. doi: 10.1146/annurev.matsci.38.060407.130339.CrossRefGoogle Scholar
  28. P.-G. de Gennes. Wetting: Statics and dynamics. Rev. Mod. Phys., 57: 827–863, 1985. doi: 10.1103/RevModPhys.57.827.CrossRefGoogle Scholar
  29. P.-G. de Gennes. The dynamics of reactive wetting on solid surfaces. Physica A, 249:196–205, 1998.CrossRefGoogle Scholar
  30. G. J. Dunn, S. K. Wilson, B. R. Duffy, S. David, and K. Sefiane. The strong influence of substrate conductivity on droplet evaporation. J. Fluid Mech., 623:329–351, 2009. doi: 10.1017/S0022112008005004.zbMATHCrossRefGoogle Scholar
  31. I. E. Dzyaloshinskii, E. M. Lifshitz, and L. P. Pitaevskii. Van der Waals forces in liquid films. Sov. Phys. JETP, 37:161, 1960.Google Scholar
  32. H. P. Fischer, P. Maass, and W. Dieterich. Diverging time and length scales of spinodal decomposition modes in thin films. Europhys. Lett., 42:49–54, 1998.CrossRefGoogle Scholar
  33. L. Frastia, A. J. Archer, and U. Thiele. Dynamical model for the formation of patterned deposits at receding contact lines. Phys. Rev. Lett., 2011a. at press, (preprint at http://arxiv.org/abs/1008.4334).Google Scholar
  34. L. Frastia, U. Thiele, and L. M. Pismen. Determination of the thickness and composition profiles for a film of binary mixture on a solid substrate. Math. Model. Nat. Phenom., 6:62–86, 2011b. doi: 10.1051/mmnp/20116104.MathSciNetzbMATHCrossRefGoogle Scholar
  35. O. A. Frolovskaya, A. A. Nepomnyashchy, A. Oron, and A. A. Golovin. Stability of a two-layer binary-fluid system with a diffuse interface. Phys. Fluids, 20:112105, 2008. doi: 10.1063/1.3021479.CrossRefGoogle Scholar
  36. D. Gallez and W. T. Coakley. Far-from-equilibrium phenomena in bioadhesion processes. Heterogeneous Chem. Rev., 3:443-475, 1996.Google Scholar
  37. M. Geoghegan and G. Krausch. Wetting at polymer surfaces and interfaces. Prog. Polym. Sci., 28:261–302, 2003. doi: 10.1016/S0079-6700(02)00080-1.CrossRefGoogle Scholar
  38. A. A. Golovin, A. A. Nepomnyashchy, S. H. Davis, and M. A. Zaks. Convective Cahn-Hilliard models: From coarsening to roughening. Phys. Rev. Lett., 86:1550–1553, 2001. doi: 10.1103/PhysRevLett.86.1550.CrossRefGoogle Scholar
  39. P. C. Hohenberg and B. I. Halperin. Theory of dynamic critical phenomena. Rev. Mod. Phys., 49:435–479, 1977.CrossRefGoogle Scholar
  40. J. Israelachvili. Intermolecular and Surface Forces. Academic Press: London, 1992.Google Scholar
  41. O. E. Jensen and J. B. Grotberg. Insoluble surfactant spreading on a thin viscous film: Shock evolution and film rupture. J. Fluid Mech., 240: 259–288, 1992.MathSciNetzbMATHCrossRefGoogle Scholar
  42. K. John and U. Thiele. Self-ratcheting stokes drops driven by oblique vibrations. Phys. Rev. Lett., 104:107801, 2010. doi: 10.1103/Phys-RevLett.104.107801.CrossRefGoogle Scholar
  43. K. John, M. Bär, and U. Thiele. Self-propelled running droplets on solid substrates driven by chemical reactions. Eur. Phys. J. E, 18:183–199, 2005. doi: 10.1140/epje/i2005-10039-1.CrossRefGoogle Scholar
  44. K. John, P. Hänggi, and U. Thiele. Ratchet-driven fluid transport in bounded two-layer films of immiscible liquids. Soft Matter, 4:1183–1195, 2008. doi: 10.1039/b718850a.CrossRefGoogle Scholar
  45. D. D. Joseph. Fluid-dynamics of 2 miscible liquids with diffusion and gradient stresses. Eur. J. Mech. B-Fluids, 9:565–596, 1990.Google Scholar
  46. S. Kalliadasis. Falling films under complicated conditions. In S. Kalliadasis and U. Thiele, editors, Thin films of Soft Matter, pages 137–190, Wien, 2007. Springer.Google Scholar
  47. R. Konnur, K. Kargupta, and A. Sharma. Instability and morphology of thin liquid films on chemically heterogeneous substrates. Phys. Rev. Lett., 84:931–934, 2000. doi: 10.1103/PhysRevLett.84.931.CrossRefGoogle Scholar
  48. M. H. Köpf, S. V. Gurevich, R. Friedrich, and L. F. Chi. Pattern formation in monolayer transfer systems with substrate-mediated condensation. Langmuir, 26:10444–10447, 2010. doi: 10.1021/la101900z.CrossRefGoogle Scholar
  49. S. Krishnamoorthy, B. Ramaswamy, and S. W. Joo. Spontaneous rupture of thin liquid films due to thermocapillarity: A full-scale direct numerical simulation. Phys. Fluids, 7:2291–2293, 1995.zbMATHCrossRefGoogle Scholar
  50. J. S. Langer. An introduction to the kinetics of first-order phase transitions. In C. Godreche, editor, Solids far from Equilibrium, pages 297–363. Cambridge University Press, 1992.Google Scholar
  51. F. Léonforte, J. Servantie, C. Pastorino, and M. Müller. Molecular transport and flow past hard and soft surfaces: computer simulation of model systems. J. Phys.: Cond. Mat., 2011. (at press).Google Scholar
  52. Z. Lin, T. Kerle, T. P. Russell, E. Schäffer, and U. Steiner. Structure formation at the interface of liquid liquid bilayer in electric field. Macromolecules, 35:3971–3976, 2002.CrossRefGoogle Scholar
  53. S. Lindström and H. Andersson-Svahn. Miniaturization of biological assays-Overview on microwell devices for single-cell analyses. Biochim. Biophys. Acta, 2010. doi: 10.1016/j.bbagen.2010.04.009. published online.Google Scholar
  54. A. V. Lyushnin, A. A. Golovin, and L. M. Pismen. Fingering instability of thin evaporating liquid films. Phys. Rev. E, 65:021602, 2002. doi: 10.1103/PhysRevE.65.021602.MathSciNetCrossRefGoogle Scholar
  55. S. Madruga and U. Thiele. Decomposition driven interface evolution for layers of binary mixtures: II. Influence of convective transport on linear stability. Phys. Fluids, 21:062104, 2009. doi: 10.1063/1.3132789.CrossRefGoogle Scholar
  56. O. K. Matar and R. V. Craster. Dynamics of surfactant-assisted spreading. Soft Matter, 5:3801–3809, 2009. doi: 10.1039/b908719m.CrossRefGoogle Scholar
  57. D. Merkt, A. Pototsky, M. Bestehorn, and U. Thiele. Long-wave theory of bounded two-layer films with a free liquid-liquid interface: Short-and long-time evolution. Phys. Fluids, 17:064104, 2005. doi: 10.1063/1.1935487.MathSciNetCrossRefGoogle Scholar
  58. M. Mertig, U. Thiele, J. Bradt, G. Leibiger, W. Pompe, and H. Wendrock. Scanning force microscopy and geometrical analysis of two-dimensional collagen network formation. Surface and Interface Analysis, 25:514–521, 1997.CrossRefGoogle Scholar
  59. D. Mijatovic, J. C. T. Eijkel, and A. van den Berg. Technologies for nanofluidic systems: Top-down vs. bottom-up-a review. Lab Chip, 5:492–500, 2005.CrossRefGoogle Scholar
  60. V. S. Mitlin. Dewetting of solid surface: Analogy with spinodal decomposition. J. Colloid Interface Sci., 156:491–497, 1993. doi: 10.1006/jcis.1993.1142.CrossRefGoogle Scholar
  61. M. D. Morariu, N. E. Voicu, E. Schäffer, Z. Lin, T. P. Russell, and U. Steiner. Hierarchical structure formation and pattern replication induced by an electric field. Nat. Mater., 2:48–52, 2003. doi: 10.1038/nmat789.CrossRefGoogle Scholar
  62. A. Münch, B. Wagner, and T. P. Witelski. Lubrication models with small to large slip lengths. J. Eng. Math., 53:359–383, 2005. doi: 10.1007/s10665-005-9020-3.zbMATHCrossRefGoogle Scholar
  63. L. Ó. Náraigh and J. L. Thiffeault. Nonlinear dynamics of phase separation in thin films. Nonlinearity, 23:1559–1583, 2010. doi: 10.1088/0951-7715/23/7/003.MathSciNetzbMATHCrossRefGoogle Scholar
  64. A. Oron and P. Rosenau. Formation of patterns induced by thermocapillarity and gravity. J. Physique II France, 2:131–146, 1992.CrossRefGoogle Scholar
  65. A. Oron, S. H. Davis, and S. G. Bankoff. Long-scale evolution of thin liquid films. Rev. Mod. Phys., 69:931–980, 1997. doi: 10.1103/RevMod-Phys.69.931.CrossRefGoogle Scholar
  66. M. Oron, T. Kerle, R. Yerushalmi-Rozen, and J. Klein. Persistent droplet motion in liquid-liquid dewetting. Phys. Rev. Lett., 92:236104, 2004. doi: 10.1103/PhysRevLett.92.236104.CrossRefGoogle Scholar
  67. Q. Pan, K. I. Winey, H. H. Hu, and R. J. Composto. Unstable polymer bilayers. 2. The effect of film thickness. Langmuir, 13:1758–1766, 1997.CrossRefGoogle Scholar
  68. A. Z. Panagiotopoulos. Monte Carlo methods for phase equilibria of fluids. J. Phys.: Condens. Matter, 12:R25–R52, 2000.CrossRefGoogle Scholar
  69. E. Pauliac-Vaujour, A. Stannard, C. P. Martin, M. O. Blunt, I. Notingher, P. J. Moriarty, I. Vancea, and U. Thiele. Fingering instabilities in dewetting nanofluids. Phys. Rev. Lett., 100:176102, 2008. doi: 10.1103/Phys-RevLett.100.176102.CrossRefGoogle Scholar
  70. A. Pereira, P. M. J. Trevelyan, U. Thiele, and S. Kalliadasis. Interfacial hydrodynamic waves driven by chemical reactions. J. Engg. Math., 59: 207–220, 2007. doi: 10.1007/s10665-007-9143-9.MathSciNetzbMATHCrossRefGoogle Scholar
  71. T. Pfohl, F. Mugele, R. Seemann, and S. Herminghaus. Trends in microfluidics with complex fluids. ChemPhysChem, 4:1291–1298, 2003.CrossRefGoogle Scholar
  72. L. M. Pismen. Nonlocal diffuse interface theory of thin films and the moving contact line. Phys. Rev. E, 64:021603, 2001. doi: 10.1103/Phys-RevE.64.021603.CrossRefGoogle Scholar
  73. L. M. Pismen. Mesoscopic hydrodynamics of contact line motion. Colloid Surf. A-Physicochem. Eng. Asp., 206:11–30, 2002.CrossRefGoogle Scholar
  74. L. M. Pismen and Y. Pomeau. Disjoining potential and spreading of thin liquid layers in the diffuse interface model coupled to hydrodynamics. Phys. Rev. E, 62:2480–2492, 2000. doi: 10.1103/PhysRevE.62.2480.MathSciNetCrossRefGoogle Scholar
  75. M. Plapp and J. F. Gouyet. Surface modes and ordered patterns during spinodal decomposition of an abv model alloy. Phys. Rev. Lett., 78: 4970–4973, 1997.CrossRefGoogle Scholar
  76. A. Pototsky, M. Bestehorn, D. Merkt, and U. Thiele. Morphology changes in the evolution of liquid two-layer films. J. Chem. Phys., 122:224711, 2005. doi: 10.1063/1.1927512.CrossRefGoogle Scholar
  77. A. Pototsky, M. Bestehorn, D. Merkt, and U. Thiele. 3d surface patterns in liquid two-layer films. Europhys. Lett., 74:665–671, 2006. doi: 10.1209/epl/i2006-10026-8.CrossRefGoogle Scholar
  78. E. Rabani, D. R. Reichman, P. L. Geissler, and L. E. Brus. Drying-mediated self-assembly of nanoparticles. Nature, 426:271–274, 2003.CrossRefGoogle Scholar
  79. A. Y. Rednikov and P. Colinet. Vapor-liquid steady meniscus at a superheated wall: Asymptotics in an intermediate zone near the contact line. Microgravity Sci. Technol., 22:249–255, 2010. doi: 10.1007/s12217-010-9177-x.CrossRefGoogle Scholar
  80. G. Reiter. Dewetting of thin polymer films. Phys. Rev. Lett., 68:75–78, 1992. doi: 10.1103/PhysRevLett.68.75.MathSciNetCrossRefGoogle Scholar
  81. G. Reiter and A. Sharma. Auto-optimization of dewetting rates by rim instabilities in slipping polymer films. Phys. Rev. Lett., 87:166103, 2001. doi: 10.1103/PhysRevLett.87.166103.CrossRefGoogle Scholar
  82. D. H. Rothman and S. Zaleski. Lattice-gas models of phase-separation-interfaces, phase-transitions, and multiphase flow. Rev. Mod. Phys., 66: 1417–1479, 1994.CrossRefGoogle Scholar
  83. E. Ruckenstein and R. K. Jain. Spontaneous rupture of thin liquid films. J. Chem. Soc. Faraday Trans. II, 70:132–147, 1974.CrossRefGoogle Scholar
  84. C. Ruyer-Quil and P. Manneville. Modeling film flows down inclined planes. Eur. Phys. J. B, 6:277–292, 1998.CrossRefGoogle Scholar
  85. A. J. Ryan, C. J. Crook, J. R. Howse, P. Topham, R. A. L. Jones, M. Geoghegan, A. J. Parnell, L. Ruiz-Perez, S. J. Martin, A. Cadby, A. Menelle, J. R. P. Webster, A. J. Gleeson, and W. Bras. Responsive brushes and gels as components of soft nanotechnology. Faraday Discuss., 128:55–74, 2005.CrossRefGoogle Scholar
  86. I. M. R. Sadiq and R. Usha. Thin Newtonian film flow down a porous inclined plane: Stability analysis. Phys. Fluids, 20:022105, 2008.CrossRefGoogle Scholar
  87. S. Sankararaman and S. Ramaswamy. Instabilities and waves in thin films of living fluids. Phys. Rev. Lett., 102:118107, 2009. doi: 10.1103/Phys-RevLett.102.118107.bl]ReferencesCrossRefGoogle Scholar
  88. B. Scheid, C. Ruyer-Quil, U. Thiele, O. A. Kabov, J. C. Legros, and P. Colinet. Validity domain of the Benney equation including Marangoni effect for closed and open flows. J. Fluid Mech., 527:303–335, 2005. doi: 10.1017/S0022112004003179.MathSciNetzbMATHCrossRefGoogle Scholar
  89. R. Seemann, S. Herminghaus, C. Neto, S. Schlagowski, D. Podzimek, R. Konrad, H. Mantz, and K. Jacobs. Dynamics and structure formation in thin polymer melt films. J. Phys.: Condens. Matter, 17:S267–S290, 2005.CrossRefGoogle Scholar
  90. M. Sferrazza, M. Heppenstall-Butler, R. Cubitt, D. Bucknall, J. Webster, and R. A. L. Jones. Interfacial instability driven by dispersive forces: The early stages of spinodal dewetting of a thin polymer film on a polymer substrate. Phys. Rev. Lett., 81:5173–5176, 1998.CrossRefGoogle Scholar
  91. A. Sharma. Relationship of thin film stability and morphology to macroscopic parameters of wetting in the apolar and polar systems. Langmuir, 9:861–869, 1993a. doi: 10.1021/la00027a042.CrossRefGoogle Scholar
  92. A. Sharma. Equilibrium contact angles and film thicknesses in the apolar and polar systems: Role of intermolecular interactions in coexistence of drops with thin films. Langmuir, 9:3580, 1993b.CrossRefGoogle Scholar
  93. A. Sharma and R. Khanna. Pattern formation in unstable thin liquid films. Phys. Rev. Lett., 81:3463–3466, 1998. doi: 10.1103/Phys-RevLett.81.3463.CrossRefGoogle Scholar
  94. A. Sharma and G. Reiter. Instability of thin polymer films on coated substrates: Rupture, dewetting and drop formation. J. Colloid Interface Sci., 178:383–399, 1996. doi: 10.1006/jcis.1996.0133.CrossRefGoogle Scholar
  95. A. Sharma and E. Ruckenstein. Mechanism of tear film rupture and its implications for contact-lens tolerance. Amer. J. Optom. Physiol. Opt., 62:246–253, 1985.CrossRefGoogle Scholar
  96. T. M. Squires and S. R. Quake. Microfluidics: Fluid physics at the nanoliter scale. Rev. Mod. Phys., 77:977–1026, 2005.CrossRefGoogle Scholar
  97. V. M. Starov and M. G. Velarde. Surface forces and wetting phenomena. J. Phys.-Condes. Matter, 21:464121, 2009. doi: 10.1088/0953-8984/21/46/464121.CrossRefGoogle Scholar
  98. U. Thiele. Open questions and promising new fields in dewetting. Eur. Phys. J. E, 12:409–416, 2003. doi: 10.1140/epje/e2004000094.CrossRefGoogle Scholar
  99. U. Thiele. Structure formation in thin liquid films. In S. Kalliadasis and U. Thiele, editors, Thin films of Soft Matter, pages 25–93, Wien, 2007. Springer.Google Scholar
  100. U. Thiele. Thin film evolution equations from (evaporating) dewetting liquid layers to epitaxial growth. J. Phys.: Condens. Matter, 22:084019, 2010. doi: 10.1088/09538984/ 22/8/084019.CrossRefGoogle Scholar
  101. U. Thiele. On the depinning of a drop of partially wetting liquid on a rotating cylinder. J. Fluid Mech., 671, 121–136, 2011a. doi: 10.1017/S0022112010005483.MathSciNetzbMATHCrossRefGoogle Scholar
  102. U. Thiele. Note on thin film equations for solutions and suspensions. Eur. Phys. J. Special Topics, 197:213–220, 2011b. doi: 10.1140/epjst/e2011014627.CrossRefGoogle Scholar
  103. U. Thiele. Thoughts on mesoscopic continuum models. Eur. Phys. J. Special Topics, 197:6771, 2011c. doi: 10.1140/epjst/e2011014387.Google Scholar
  104. U. Thiele and K. John. Transport of free surface liquid films and drops by external ratchets and selfratcheting mechanisms. Chem. Phys., 375: 578–586, 2010. doi: 10.1016/j.chemphys.2010.07.011.CrossRefGoogle Scholar
  105. U. Thiele and E. Knobloch. Thin liquid films on a slightly inclined heated plate. Physica D, 190:213–248, 2004.MathSciNetzbMATHCrossRefGoogle Scholar
  106. U. Thiele, M. G. Velarde, and K. Neuffer. Dewetting: Film rupture by nucleation in the spinodal regime. Phys. Rev. Lett., 87:016104, 2001a. doi: 10.1103/PhysRevLett.87.016104.CrossRefGoogle Scholar
  107. U. Thiele, M. G. Velarde, K. Neuffer, M. Bestehorn, and Y. Pomeau. Sliding drops in the diffuse interface model coupled to hydrodynamics. Phys. Rev. E, 64:061601, 2001b. doi: 10.1103/PhysRevE.64.061601.CrossRefGoogle Scholar
  108. U. Thiele, K. Neuffer, Y. Pomeau, and M. G. Velarde. On the importance of nucleation solutions for the rupture of thin liquid films. Colloid Surf. A, 206:135–155, 2002.CrossRefGoogle Scholar
  109. U. Thiele, L. Brusch, M. Bestehorn, and M. Bär. Modelling thinfilm dewetting on structured substrates and templates: Bifurcation analysis and numerical simulations. Eur. Phys. J. E, 11:255–271, 2003. doi: 10.1140/epje/i2003100195.CrossRefGoogle Scholar
  110. U. Thiele, S. Madruga, and L. Frastia. Decomposition driven interface evolution for layers of binary mixtures: I. Model derivation and stratified base states. Phys. Fluids, 19:122106, 2007. doi: 10.1063/1.2824404.CrossRefGoogle Scholar
  111. U. Thiele, B. Goyeau, and M. G. Velarde. Film flow on a porous substrate. Phys. Fluids, 21:014103, 2009a. doi: 10.1063/1.3054157.CrossRefGoogle Scholar
  112. U. Thiele, I. Vancea, A. J. Archer, M. J. Robbins, L. Frastia, A. Stannard, E. PauliacVaujour, C. P. Martin, M. O. Blunt, and P. J. Moriarty. Modelling approaches to the dewetting of evaporating thin films of nanoparticle suspensions. J. Phys.-Cond. Mat., 21:264016, 2009b. doi: 10.1088/0953-8984/21/26/264016.CrossRefGoogle Scholar
  113. D. Todorova, U. Thiele, and L. M. Pismen. The relation of steady evaporating drops fed by an influx and freely evaporating drops. J. Engg. Math., 2011. doi: 10.1007/s10665-011-9485-1 (online).Google Scholar
  114. I. Vancea, U. Thiele, E. Pauliac-Vaujour, A. Stannard, C. P. Martin, M. O. Blunt, and P. J. Moriarty. Front instabilities in evaporatively dewetting nanofluids. Phys. Rev. E, 78:041601, 2008. doi: 10.1103/Phys-RevE.78.041601.CrossRefGoogle Scholar
  115. R. Verma and A. Sharma. Defect sensitivity in instability and dewetting of thin liquid films: Two regimes of spinodal dewetting. Ind. Eng. Chem. Res., 46:3108–3118, 2007. doi: 10.1021/ie060615q.CrossRefGoogle Scholar
  116. R. Verma, A. Sharma, K. Kargupta, and J. Bhaumik. Electric field induced instability and pattern formation in thin liquid films. Langmuir, 21: 3710–3721, 2005. doi: 10.1021/la0472100.CrossRefGoogle Scholar
  117. N. Vladimirova, A. Malagoli, and R. Mauri. Two-dimensional model of phase segregation in liquid binary mixtures. Phys. Rev. E, 60:6968–6977, 1999.CrossRefGoogle Scholar
  118. M. R. E. Warner, R. V. Craster, and O. K. Matar. Surface patterning via evaporation of ultrathin films containing nanoparticles. J. Colloid Interface Sci., 267:92–110, 2003.CrossRefGoogle Scholar
  119. J. Xu, J. F. Xia, and Z. Q. Lin. Evaporation-induced self-assembly of nanoparticles from a sphere-on-flat geometry. Angew. Chem.-Int. Edit., 46:1860–1863, 2007. doi: 10.1002/anie.200604540.CrossRefGoogle Scholar

Copyright information

© CISM, Udine 2012

Authors and Affiliations

  • Uwe Thiele
    • 1
  1. 1.Department of Mathematical SciencesLoughborough UniversityLoughborough, LeicestershireUK

Personalised recommendations