Advertisement

Gel-Solvent Friction

  • Masayuki TokitaEmail author
Chapter
  • 1k Downloads
Part of the Soft and Biological Matter book series (SOBIMA)

Abstract

The science of gel draws much attention after the discovery of the volume phase transition of gel. Among others, the information on the dynamics of gel is of importance to understand the kinetic behaviors of the volume phase transition of the gel. It is well established that the dynamics of gel is governed mainly by the collective diffusion of the polymer network of gel and the collective diffusion itself is determined by the balance between two forces. One is the elastic force due to the deformation of three-dimensional polymer network of gel, and the other is the frictional drag force between the polymer network of gel and the gel fluid. In early stage of the study in gels, the elastic properties of gel attract much attention, and, hence, considerable effort has been devoted to clarify the elastic behaviors of gel. The elastic properties of various gels under various experimental conditions are gained and reported so far. In contrast, much attention has not been paid to the frictional properties of gel since the experimental method in obtaining the reliable values of the friction coefficient has not been established until recently. The systematic studies on the frictional properties of gel begun only recently. Here, we would like to overview the earlier studies on the frictional property of gels including why the frictional study of gel is difficult and how we can solve the difficulty to obtain the reliable values of the friction coefficient of gel. The recent advancement on the frictional study of colloid gel will also be reviewed.

Keywords

Friction Collective diffusion Colloid gel Network gel 

References

  1. 1.
    T. Tanaka, L. O. Hocker, and G. B. Benedek, J. Chem. Phys., 59, 5151 (1973).CrossRefGoogle Scholar
  2. 2.
    T. Tanaka, Phys. Rev. Lett., 40, 820 (1978).CrossRefGoogle Scholar
  3. 3.
    T. Tanaka, D. J. Fillmore, S. -T. Sun, I. Nishio, G. Swislow, and A. Shah, Phys. Rev. Lett., 45, 1636 (1980).CrossRefGoogle Scholar
  4. 4.
    T. Tanaka and D. J. Fillmore, J. Chem. Phys., 70, 1214 (1979).CrossRefGoogle Scholar
  5. 5.
    T. Tanaka, S. Ishiwata, and C. Ishimoto, Phys. Rev. Lett., 38, 771 (1977).CrossRefGoogle Scholar
  6. 6.
    J. P. Munch, S. Candau, J. Herz, and G. Hild, J. Phys. (Paris) 38, 971 (1977).CrossRefGoogle Scholar
  7. 7.
    J. P. Munch, P. Lemarechal, and S. Candau, J. Phys. (Paris) 38, 1499 (1977).CrossRefGoogle Scholar
  8. 8.
    T. Takebe, K. Nawa, S. Suehiro and T. Hashimoto, J. Chem. Phys., 59, 4360 (1989).CrossRefGoogle Scholar
  9. 9.
    P. G. de Gennes, Scaling Concepts in Polymer Physics, (Cornell University Press, Ithaca, 1979).Google Scholar
  10. 10.
    N. Weiss and A. Silberberg, Polym. Prepr. Am. Chem. Soc., Div. Polym. Chem., 16, 289 (1979).Google Scholar
  11. 11.
    N. Weiss, T. van Vilet, and A. Silberberg, J. Polym. Sci. Polym. Phys. Eds., 17, 2229 (1979).CrossRefGoogle Scholar
  12. 12.
    A. M. Hecht and E. Geissler, J. Chem. Phys., 73, 4077 (1980).CrossRefGoogle Scholar
  13. 13.
    E. Geissler and A. M. Hecht, J. Chem. Phys., 77, 1548 (1982).CrossRefGoogle Scholar
  14. 14.
    M. Tokita and T. Tanaka, J. Chem. Phys., 95, 4613 (1991).CrossRefGoogle Scholar
  15. 15.
    Y. Hirokawa and T. Tanaka, J. Chem. Phys., 81, 6379 (1984).CrossRefGoogle Scholar
  16. 16.
    Y. Y. Suzuki, M. Tokita, and S. Mukai, Euro. Phys. J. E, 29, 415 (2009).Google Scholar
  17. 17.
    M. Tokita and T. Tanaka, Science, 253, 1121 (1991).CrossRefGoogle Scholar
  18. 18.
    E. G. Richards and C. J. Temple, Nature (Phys. Sci.), 230, 92 (1971).Google Scholar
  19. 19.
    M. Tokita, Polymers, 6, 651 (2014).CrossRefGoogle Scholar
  20. 20.
    Y. Doi and M. Tokita, Langmuir, 21, 5285 (2005).CrossRefGoogle Scholar
  21. 21.
    S. Mukai, H. Miki, V. Garamus, R. Willmeit, and M. Tokiya, Progre. Colloid Polymer Sci., 136, 95 (2009).Google Scholar
  22. 22.
    Y. Doi and M. Tokita, Langmuir, 21, 9420 (2005).CrossRefGoogle Scholar
  23. 23.
    E. S. Matsuo and T. Tanaka, Nature, 358, 482 (1992).CrossRefGoogle Scholar
  24. 24.
    J. Maskawa, T. Takeuchi, K. Maki, K. Tsujii, and T. Tanaka, J. Chem. Phys., 110, 10993 (1999).CrossRefGoogle Scholar
  25. 25.
    M. Tokita, S. Suzuki, K. Miyamoto, and T. Komai, J. Phys. Soc. Jpn., 68, 330 (1999).CrossRefGoogle Scholar
  26. 26.
    M. Tokita, K. Miyamoto, and T. Komai, J. Chem. Phys., 113, 1647 (2000).CrossRefGoogle Scholar
  27. 27.
    K. Nakamura, E. Shinoda, and M. Tokita, Food Hydrocolloids, 15, 247 (2001).CrossRefGoogle Scholar
  28. 28.
    M. Tokita, Adv. Polym. Sci., 110, 27 (1993).CrossRefGoogle Scholar

Copyright information

© Springer Japan 2017

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceKyushu UniversityFukuokaJapan

Personalised recommendations