Advertisement

Rheology Modifiers for the Management of Dysphagia

  • Graham SwornEmail author
Chapter
  • 1.1k Downloads
Part of the Soft and Biological Matter book series (SOBIMA)

Abstract

Dysphagia is the medical term used to describe swallowing problems resulting from a disorder in the mechanics of swallowing which can lead to impairment in the safety, efficiency or quality of eating and drinking. Dysphagia can be caused by many disorders including neurological disorders, stroke, traumatic brain injury, Huntington’s disease, multiple sclerosis, Parkinson’s disease and cerebral palsy. Many of these conditions are associated with the elderly and, with the continuing demographic shift, dysphagia is a growing problem.

The rheological properties of the bolus significantly influence the effectiveness and safety of the swallowing process, and the use of hydrocolloids to control the rheology can greatly help in the management of dysphagia. To be an effective thickener for this application, the following properties are important:
  • Easy dispersion at low mixing speeds

  • Fast hydration (cold and hot)

  • Fast hydration in different media (water, tea, coffee, fruit juices)

  • Stable viscosity as a function of:
    • Time

    • Temperature

Creating instant viscosity under suboptimal mixing conditions and choosing the right rheological properties pose a number of challenges for the use of hydrocolloids in this application, and the factors influencing their choice and performance will be reviewed.

Keywords

Dysphagia Swallowing Hydrocolloids Xanthan Viscosity Rheology 

Notes

Acknowledgements

I thank my colleague Professor Niall Young for helpful discussions and critically reviewing the manuscript.

References

  1. 1.
    Brown, A., Mills, R.H., Daubert, C.R., and Casper, M.L. (1998). Establishing labels and standards for thickened liquids in the dysphagia diet. The Consultant Dietician, 23, 1.Google Scholar
  2. 2.
    Coster, S.T., and Schwarz, W.H. (1987). Rheology and the swallow-safe bolus. Dysphagia, 1, 93.CrossRefGoogle Scholar
  3. 3.
    Cox, W.P. and Merz, E.H. (1958). Correlation of dynamic and steady flow viscosities. J. Polym. Sci., 28, 619.CrossRefGoogle Scholar
  4. 4.
    Cichero, J.A.Y., Jackson, O., Halley, P.J., and Murdoch, B.E. (2000). How Thick Is Thick? Multicenter study of the rheological and material property characteristics of mealtime fluids and videofluoroscopy fluids. Dysphagia, 15, 188–200.CrossRefGoogle Scholar
  5. 5.
    Cichero, J.A.Y., Steele, C., Duivestein, J., Clavé, P., Chen, J., Kayashita, J., Dantas, R., Lecko, C., Speyer, R., Lam, P., & Murray, J. (2013). The need for international terminology and definitions for texture-modified foods and thickened liquids used in dysphagia management: Foundations of a global initiative. Curr. Phys. Med. Rehabil. Rep., 1, 280–291.CrossRefGoogle Scholar
  6. 6.
    Cross, M.M. (1965). Rheology of non-Newtonian fluids: a new flow equation for pseudo-plastic systems. J. Colloid Sci., 20, 417–437.CrossRefGoogle Scholar
  7. 7.
    Garin, N., De Pourcq, J.N., Martın-Venegas, R., Cardona, D., Gich, I., & Mangues, M.A. (2014). Viscosity differences between thickened beverages suitable for elderly patients with dysphagia. Dysphagia, 29, 483–488.CrossRefGoogle Scholar
  8. 8.
    Germain, I., Dufresne, T., and Ramaswamy, H.S. (2006). Rheological characterisation of thickened beverages used in the treatment of dysphagia. J. Food Eng., 73, 64.CrossRefGoogle Scholar
  9. 9.
    Glicksman, M. (1983). Food Hydrocolloids,Vols I, II and III. CRC Press Inc., FL.Google Scholar
  10. 10.
    Goulding, R., and Bakheit, A.M.O. (2000). Evaluation of the benefits of monitoring fluid thickness in the dietary management of dysphagic stroke patients. Clinical rehabilitation, 14, 99.CrossRefGoogle Scholar
  11. 11.
    Hanson, B., O’Leary, M.T., & Smith, C.H. (2012). The effect of saliva on the viscosity of thickened drinks. Dysphagia, 27 10–19.CrossRefGoogle Scholar
  12. 12.
    Hasegawa, A., Otoguro, A., Kumagai, H., & Nakazawa, F. (2005). Nihon Shokuhin Kagaku Kogaku Kaishi (in Japanese), 52, 441–447.CrossRefGoogle Scholar
  13. 13.
    Hasegawa, A., Nakazawa, F., & Kumagai, H. (2008). Nihon Shokuhin Kagaku Kogaku Kaishi (in Japanese), 55, 330–337.CrossRefGoogle Scholar
  14. 14.
    Hawdon, J.M., Beauregard, N., Slattery, J., & Kennedy, G. (2000). Identification of neonates at risk of developing feeding problems in infancy. Dev. Med. Child Neurol., 42, 235–9.CrossRefGoogle Scholar
  15. 15.
    Hooke, R. (1678). De PotentiaBestitutiva.Google Scholar
  16. 16.
    IDDSI (2015) Detailed descriptors, testing methods and evidence. Drinks: Levels 0–4. www.iddsi.org
  17. 17.
    Imeson, A. (1999). Thickening and Gelling Agents for Food, 2nd edition. Aspen Publishers Inc.,MD.Google Scholar
  18. 18.
    Jansson,P-E., Kenne, L., & Lindberg, B. (1975). Structure of the extracellular polysaccharide from Xanthomonas campestris. Carbohydrate Research, 45, 275–282.CrossRefGoogle Scholar
  19. 19.
    Kamiya, T., Toyama, Y., Michiwaki, Y., & Kikuchi, T. (2013a) Development of a numerical simulator of human swallowing using a particle method (Part 1. Preliminary evaluation of the possibility of numerical simulation using MPS method). 35 th Annual International Conference of the IEEE EMBS 4454–57.Google Scholar
  20. 20.
    Kamiya, T., Toyama, Y., Michiwaki, Y., & Kikuchi, T. (2013b) Development of a numerical simulator of human swallowing using a particle method (Part 2. Evaluation of the accuracy of a swallowing simulation using the 3D MPS method). 35 th Annual International Conference of the IEEE EMBS 2992–95.Google Scholar
  21. 21.
    Kool, M.A., Harry Gruppen, H., Sworn, G., & Schols, H.A. (2013). Comparison of xanthans by the relative abundance of its six constituent repeating units. Carbohydrate Polymers, 98, 914–921CrossRefGoogle Scholar
  22. 22.
    Leonard, R.J., White, C., McKenzie, S., & Belafsky, P.C. (2014). Effects of bolus rheology on aspiration in patients with dysphagia. J. Acad. Nutr. Diet, 94, 590–4.CrossRefGoogle Scholar
  23. 23.
    Longmann, J.A. (1983). Evaluation and treatment of swallowing disorders. San Diego: College-Hill Pres Inc.Google Scholar
  24. 24.
    Mackley, M.R., Tock, C., Anthony, R., Butler, S.A., Chapman, G., & Vadillo, D. C. (2013). The rheology and processing behavior of starch and gum-based dysphagia thickeners. J. Rheol., 57, 1533.CrossRefGoogle Scholar
  25. 25.
    Mann, L.L., and Wong, K. (1996). Development of an objective method for assessing viscosity of formulated foods and beverages for the dysphagic diet. J. Am. Diet. Assoc., 96, 585.CrossRefGoogle Scholar
  26. 26.
    Matta, Z., Chambers IV, E., Garcia, J.M., & Helverson, J.M. (2006). Sensory characteristics of beverages prepared with commercial thickeners used for dysphagia diets. J. Am. Diet Assoc., 106, 1049–1054.CrossRefGoogle Scholar
  27. 27.
    Melton, L.D., Mindt, L., Rees, D.A., & Sanderson, G.R. (1976). Covalent structure of the polysaccharide from Xanthomonas campestris: Evidence from partial hydrolysis studies. Carbohydrate Research, 46, 245–257.CrossRefGoogle Scholar
  28. 28.
    Mills, H. (1999). Rheology overview: control of liquid viscosities in dysphagia management. Nutrition in Clinical Practice, 14, 52.CrossRefGoogle Scholar
  29. 29.
    Mitchell, J.R. (1979). Rheology of polysaccharide solutions and gels. In,. Polysaccharides in foods. J.M.V. Blanshard, and J.R. Mitchell, (Eds), Butterworth & Co Ltd., London, pp 51–72.CrossRefGoogle Scholar
  30. 30.
    Mitchell, J.R., Ferry, A.L., Desse, M., Hill, S.E., Hort, J., Marciani, L., & Wolf, B. (2008). Mixing hydrocolloids and water: Polymers versus particulates. In, Gums and Stabilisers for the Food Industry 14, P.A. Williams and G.O. Phillips (Eds.), RSC, Cambridge, pp 29–39.Google Scholar
  31. 31.
    Moret-Tatay, A., Rodríguez-García, J., Martí-Bonmatí, E., Hernando, I., & Hernandez, M.J. (2015). Commercial thickeners used by patients with dysphagia: Rheological and structural behaviour in different food matrices. Food Hydrocolloids, 51, 318–326CrossRefGoogle Scholar
  32. 32.
    Morris, E.R. (1984). Rheology of hydrocolloids. In, Gums and Stabilisers for the Food Industry 2. G.O. Phillips, D.J. Wedlock and P.A. Williams (Eds.), Pergamon Press, Oxford, pp 57–78.Google Scholar
  33. 33.
    Morris, E.R. (1989). Polysaccharide solution properties: Origin, rheological characterisation and implications for food systems. In, Frontiers in Carbohydrate Research-1. R.P. Millane, J.N. BeMiller and R. Chandrasekaran, (Eds.); Elsevier Applied Science; London, pp 132–163.Google Scholar
  34. 34.
    Morris, E.R., Cutler, A.N., Ross-Murphy, S.B., Rees, D.A., and Price, J. (1981). The concentration and shear rate dependence of viscosity in random coil polysaccharide solutions. Carbohydr. Polym., 1, 5–21.CrossRefGoogle Scholar
  35. 35.
    Nakauma, M., Ishihara, S., Funami, T., & Nishinari, K. (209). Swallowing profiles of food polysaccharide solutions with different flow behaviors. Food Hydrocolloids, 25, 965–973.Google Scholar
  36. 36.
    Newman, L.A., Keckley, C., Petersen, M.C., & Hamner, A. (2001). Swallowing function and medical diagnoses in infants suspected of Dysphagia. Pediatrics, 108, 6.CrossRefGoogle Scholar
  37. 37.
    Newton, I. (1687). Philosophiae Naturalis Principia Mathmatica.Google Scholar
  38. 38.
    Nishinari,K., Takemasa, M., Sua, L., Michiwaki, Y., Mizunuma, H., & Ogoshi, H.(209). Effect of shear thinning on aspiration - Toward making solutions for judging the risk of aspiration. Food Hydrocolloids, 25 1737–1743.Google Scholar
  39. 39.
    Paik, N-J., Han, T.R., Park, J.W., Lee, E.K., Park M.S., & Hwang I-K. (2004). Categorisation of dysphagic diets with the line spread test. Arch. Phys. Med. Rehabil., 85, 857.CrossRefGoogle Scholar
  40. 40.
    Payne, P., Methven, L., Fairfield, C., & Bell, A. (209). Consistently Inconsistent: Commercially Available Starch-Based Dysphagia Products. Dysphagia, 26, 27–33.Google Scholar
  41. 41.
    Penney, B. (2014). Use of fluid thickener to reduce dysphagia risk. Nursing Times; 90, 12, 16–18.Google Scholar
  42. 42.
    Phillips, G.O., & Williams, P.A. (2009). Handbook of Hydrocolloids, 2nd edition. Woodhead Publishing Ltd., Cambridge.CrossRefGoogle Scholar
  43. 43.
    Ross-Murphy, S.B., Rheological Methods. In Chan, H.W.-S (ed) Biophysical Methods in Food Research, Critical Reports on Applied Chemistry Vol 5; SCI Blackwell; Oxford, 1984; pp 138–199.Google Scholar
  44. 44.
    de Saint-Aubert, C., Sworn, G., & and Jun Kayashita, J. (2012). Comparison of 2 tests used for the classification of food thickeners in the management of dysphagia. In, Gums and Stabilisers for the Food Industry 17, P.A. Williams and G.O. Phillips (Eds.), RSC, Cambridge, pp 359–368.Google Scholar
  45. 45.
    Sasaki, C.T., & Leder, S.B. (2015). Comments on selected recent dysphagia literature. Dysphagia, 30, 482–487.CrossRefGoogle Scholar
  46. 46.
    Seo, C-W., & Yoo, B. (2013). Steady and dynamic shear rheological properties of gum-based food thickeners used for diet modification of patients with dysphagia: Effect of concentration. Dysphagia, 28, 205–29.CrossRefGoogle Scholar
  47. 47.
    Shama, F., and Sherman, P. (1973). Identification of stimuli controlling the sensory evaluation of viscosity. II. Oral methods. J Text. Stud., 4, 91.Google Scholar
  48. 48.
    Sliwinski, E.L., La Faille, S., & Oudhuis, L.A.C.M. (2009). Effect of human saliva on the consistency of thickened foods for patients with dysphagia. Clinical Nutrition Supplements, 4, 135.CrossRefGoogle Scholar
  49. 49.
    Smith, T.L., Sun, M.M., and Pippin J. (2004). Characterising process control of fluid viscosities in nursing homes. J. Am. Diet. Assoc., 104, 969.CrossRefGoogle Scholar
  50. 50.
    Standing, M., Qazi, A., Nystrom, M., Berta, M., Burlow, M., & Ekberg, O. (2015) Effect of shear vs extensional flow during swallowing. Annual Transactions of the Nordic Rheology Society, 23, 63–65.Google Scholar
  51. 51.
    Steele, C.M., Alsanei, W.A., Ayanikalath, S., Barbon, C.E.A., Chen, J., Cichero, J.A.Y., Coutts, K., Dantas, R.O., Duivestein, J., Giosa, L., Hanson, B., Lam, P., Lecko, C., Leigh, C., Nagy, A., Namasivayam, A.M., Nascimento, W.V., Odendaal, I., Smith, C.H., & Wang, H. (2015). The influence of food texture and liquid consistency modification on swallowing physiology and function: A Systematic Review. Dysphagia, 30, 2–26.CrossRefGoogle Scholar
  52. 52.
    Sworn, G. (2007). Natural thickeners. In, Handbook of Industrial Water Soluble Polymers, Edited by P. A. Williams, Blackwell Publishing Limited, Oxford, pp 10–31.CrossRefGoogle Scholar
  53. 53.
    Sworn, G., Kerdavid, E. and Fayos, J. (2008). The role of hydrocolloids in the management of dysphagia. In, Gums and Stabilisers for the Food Industry 14, P.A. Williams and G.O. Phillips (Eds.), RSC, Cambridge, pp 392–401.Google Scholar
  54. 54.
    Tashiro, A., Hasegawa, A., Kohyama, K., Kumagai, H., & Kumagai, H. (2010). Relationship between the rheological properties of thickened solutions and their velocity through the pharynx as measured by ultrasonic pulse Doppler method. Biosci. Biotechnlo. Biochem., 74, 8, 1598–1605.CrossRefGoogle Scholar
  55. 55.
    Wendin, K., Ekman, S., Bulow, M., Ekberg, O., Johansson, D., Rothenberg, E., & Stading, M. (2010). Objective and quantitative definitions of modified food textures based on sensory and rheological methodology. Food & Nutrition Research, 54, 5134.Google Scholar
  56. 56.
    Wood,F.W. (1968). SCI Monograph No. 27: Rheology and texture of foodstuffs. 40.Google Scholar
  57. 57.
    Yamagata, Y., Izumi, A., Egashira, F., Miyamoto, K., & Kayashita, J. (2012). Determination of a suitable shear rate for thickened liquids easy for the elderly to swallow. Food Sci. technol. Res., 18, 3, 363–369.CrossRefGoogle Scholar

Copyright information

© Springer Japan 2017

Authors and Affiliations

  1. 1.DuPontParisFrance

Personalised recommendations