Open Defects in Nanometer Technologies

Models, Test and Diagnosis
  • Joan FiguerasEmail author
  • Rosa Rodríguez-Montañés
  • Daniel Arumí
Part of the Frontiers in Electronic Testing book series (FRET, volume 43)


Open defects are responsible for a significant number of failures affecting present CMOS technologies. Furthermore, they are becoming more common as technologies are scaled down due to changes in materials and fabrication steps of ICs manufacturing processes. In this chapter, open defects are classified according to their location and resistive nature. The behavior of such defects affecting interconnect lines and logic gates is reviewed. Test strategies to improve the detectability of open defects and diagnosis methodologies are also presented.


Open defect Full open Resistive open CMOS VLSI Test Diagnosis Nanometer technologies 


  1. Aitken RC (2002) Test generation and fault modeling for stress testing. International symposium on quality electronic design, pp 95–99Google Scholar
  2. Arumí D, Rodríguez-Montañés R, Figueras J (May 2005) Defective behaviours of resistive opens in interconnect lines. European test symposium, pp 28–33Google Scholar
  3. Arumí D, Rodríguez-Montañés R, Figueras J (Jan 2008a) Experimental characterization of CMOS interconnect open defects. IEEE Trans Comput-Aided Des Integr Circuits Sys 27(1):123–136CrossRefGoogle Scholar
  4. Arumí D, Rodríguez-Montañés R, Figueras J, Eichenberger S, Hora C, Kruseman B (2008b) Full open defects in nanometric CMOS. VLSI test symposium, pp 119–124Google Scholar
  5. Arumí D, Rodríguez-Montañés R, Figueras J (2008c) Delay caused by resistive opens in interconnecting lines, accepted for publication in Integration, the VLSI Journal,
  6. Baker K, Gronthoud G, Lousberg M, Schanstra I, Hawkins C (1999) Defect-based delay testing of resistive vias contacts: a critical evaluation. International test conference, pp 467–476Google Scholar
  7. Champac VH, Rubio A, Figueras J (1993) Analysis of the floating gate defect in CMOS. Defect and fault tolerance in VLSI systems, pp 101–108Google Scholar
  8. Champac VH, Rubio A, Figueras J (Mar 1994) Electrical model of the floating gate defect in CMOS ICs: implications on I DDQ testing. IEEE Trans Comput-Aided Des Integr Circuits Syst 13(3):359–369CrossRefGoogle Scholar
  9. Champac VH, Zenteno A (2000) Detectability conditions for interconnection open defects. VLSI test symposium, pp 305–311Google Scholar
  10. Chang JTY, McCluskey EJ (1997) SHOrt Voltage Elevation (SHOVE) test for weak CMOS ICs. VLSI test symposium, pp 446–451Google Scholar
  11. Di C, Jess JAG (1993) On accurate modelling and efficient simulation of CMOS opens. International test conference, pp 875–882Google Scholar
  12. Fan X, Moore W, Hora C, Gronthoud G (2005) A novel Stuck-At Based method for transistor Stuck-Open Fault diagnosis. International Test Conference, paper 16.1Google Scholar
  13. Favalli M, Dalpasso M, Olivo P (Jul 1996) Modeling and simulation of broken connections in CMOS ICs. IEEE Trans Comput-Aided Des Integr Circuits Sys 15(7):808–814CrossRefGoogle Scholar
  14. Hawkins CF, Soden JM, Righter AW, Ferguson FJ (1994) Defect classes-an overdue paradigm for CMOS IC testing. International test conference, pp 413–425Google Scholar
  15. Henderson CL, Soden JM, Hawkins CF (1991) The behavior and testing implications of CMOS IC open circuits. International test conference, pp 302–310Google Scholar
  16. Huang SY (2002) Diagnosis of byzantine open-segment faults. Asian test symposium, pp 248–253Google Scholar
  17. Ivanov A, Rafiq S, Renovell M, Azaïs F, Bertrand Y (Jan 2001) On the detectability of CMOS floating gate transistor faults. IEEE Trans Comput-Aided Des Integr Circuits Sys 20(1)Google Scholar
  18. James C-ML, McCluskey EJ (Nov 2005) Diagnosis of resistive and stuck-open defects in digital CMOS ICs. IEEE Trans Comput-Aided Des Integr Circuits Sys 24(11):1748–1759CrossRefGoogle Scholar
  19. Johnson S (1994) Residual charge on the faulty floating gate CMOS transistor. International test conference, pp 555–561Google Scholar
  20. Kawahara R, Nakayama O, Kurasawa T (1996) The effectiveness of IDDQ and high voltage stress for burn-in elimination. International workshop on IDDQ testing, pp 9–13Google Scholar
  21. Konuk H (1997) Fault simulation of interconnect opens in digital CMOS circuits. International conference on computer-aided design, pp 548–554Google Scholar
  22. Konuk H, Ferguson FJ (Nov 1998) Oscillation and sequential behavior caused by opens in the routing in digital CMOS circuits. IEEE Trans Comput-Aided Des Integr Circuits Sys 17(11):1200–1210CrossRefGoogle Scholar
  23. Kruseman B, Heiligers M (2006) On test conditions for the detection of open defects. Design, automation and test in Europe, pp 896–901Google Scholar
  24. Li JC-M, Tseng C-W, McCluskey EJ (2001) Testing for resistive opens and stuck opens. International test conference, pp 1049–1058Google Scholar
  25. Li JC-M, McCluskey EJ (2002) Diagnosis of sequence-dependent chips. VLSI test symposium, pp 187–202Google Scholar
  26. Liu JB, Veneris A, Takahashi H (2002) Incremental diagnosis of multiple open-interconnects. International test conference, pp 1085–1092Google Scholar
  27. Liu C, Zou W, Reddy SM, Cheng W-T, Sharma M, Tang H (2007) Interconnect open defect diagnosis with minimal physical information. International test conference, pp 21–26Google Scholar
  28. Maly W, Nag PK, Nigh P (1991) Testing oriented analysis of CMOS ICs with opens. International test conference, pp 302–310Google Scholar
  29. Moore W, Gronthoud G, Baker K, Lousberg M (2000) Delay-fault testing and defects in deep sub-micron ICs – does critical resistance really mean anything? International test conference, pp 95–104Google Scholar
  30. Needham W, Prunty C, Yeoh EH (1998) High volume microprocessor test escapes, an analysis of defects our tests are missing. International test conference, pp 25–34Google Scholar
  31. Nigh P, Gattiker A (2004) Random and systematic defect analysis using IDDQ signature analysis for understanding fails and guiding test decisions. International test conference, pp 309–318Google Scholar
  32. Renovell M, Cambon G (Jan 1986) Topology dependence of floating gate faults in MOS circuits. Electron Lett 22(3):152–153CrossRefGoogle Scholar
  33. Renovell M, Cambon G (1992) Electrical analysis and modeling of floating-gate fault. IEEE Trans Comput-Aided Des Integr Circuits Sys 11(11):1450–1458CrossRefGoogle Scholar
  34. Renovell M, Comte M, Polian I, Engelke P, Becker B (2006) Analyzing the memory effect of resistive open in CMOS random logic. Design and test of integrated systems in nanoscale technology, pp 251–256Google Scholar
  35. Rodríguez-Montañés R, Volf P, Pineda de Gyvez J (2002) Resistance characterization for weak open defects. IEEE Des Test Comput 19(5):18–26CrossRefGoogle Scholar
  36. Rodríguez-Montañés R, Arumí D, Figueras J, Eichenberger S, Hora C, Kruseman B, Lousberg M, Majhi AK (2007a) Diagnosis of full open defects in interconnecting lines. VLSI test symposium, pp 158–166Google Scholar
  37. Rodríguez-Montañés R, Arumí D, Figueras J, Eichenberger S, Hora C, Kruseman B (Oct 2007b) Impact of gate tunneling leakage on CMOS circuits with full open defects. Electron Lett 43(21):1440–1441Google Scholar
  38. Rodríguez-Montañés R, Arumí D, Figueras J, Eichenberger S, Hora C, Kruseman B (2008) Time-dependent behaviour of full open defects in interconnect lines. International test conference, pp 1–10Google Scholar
  39. Sakurai T (Jan 1993) Closed-form expressions for interconnection delay, coupling, and crosstalk in VLSIs. IEEE transaction on electron devices, pp 118–124Google Scholar
  40. Sato Y, Yamazaki L, Yamanaka H, Ikeda T, Takakura M (2002) A persistent diagnostic technique for unstable defects. International test conference, pp 242–249Google Scholar
  41. Singh AD, Rasheed H, Weber WW (1995) IDDQ testing of CMOS opens: an experimental study. International test conference, pp 479–489Google Scholar
  42. Soden JM, Treece RK, Taylor MR, Hawkins CF (1989) CMOS IC stuck-open fault electrical effects and design considerations. International test conference, pp 423–430Google Scholar
  43. Stamper A, McDevitt TL, Luce SL (1998) Sub-0.25-micron interconnect scaling: damascene copper versus subtractive aluminum. IEEE advanced semiconductor manufacturing conference, pp 337–346Google Scholar
  44. Thompson KM (1996) Intel and the myths of test. IEEE Des Test Comput 13(1):79–81CrossRefGoogle Scholar
  45. Venkataraman S, Drummonds SB (2000) A technique for logic fault diagnosis of interconnect open defects. VLSI test symposium, pp 313–318Google Scholar
  46. Wadsack RL (1978) Fault modelling and logic simulation of CMOS and MOS integrated circuits. Bell SysTech J 811(57):1449–1474Google Scholar
  47. Xue H, Di C, Jess JAG (1994) Probability analysis for CMOS floating gate faults European design and test conference pp 443–448Google Scholar
  48. Yan H, Singh AD (2005) A delay test to differentiate resistive interconnect faults from weak transistor defects. International conference on VLSI design, pp 47–52Google Scholar
  49. Zou W, Cheng W-T, Reddy SM (2006) Interconnect open defect diagnosis with physical information. Asian test symposium, pp 203–209Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Joan Figueras
    • 1
    Email author
  • Rosa Rodríguez-Montañés
    • 1
  • Daniel Arumí
    • 1
  1. 1.Electronic Engineering Dpt. ETSEIBUniversitat Politècnica de Catalunya (UPC)BarcelonaSpain

Personalised recommendations