Glycoproteomics in Health and Disease

  • Weston B. StruweEmail author
  • Eoin F.J. Cosgrave
  • Jennifer C. Byrne
  • Radka Saldova
  • Pauline M. Rudd


The addition of oligosaccharides to proteins is a significant posttranslational modification that modulates protein structure, function and localization. Glycans are vital for development in all eukaryotes and are profoundly connected to a large number of human diseases, ranging from glycan genetic diseases to autoimmune disorders and cancer. Glycans present a difficult challenge in the analytical field because of the intricate dynamics of their synthesis as well as the complexity of the structures themselves. In addition to the role of glycans in development and disease, they are of great interest in the biotherapeutic industry where modification of glycosylation can significantly enhance therapeutic efficacy and biological activity in a range of glycoprotein products. However, glycosylation on a global scale in humans is yet to be fully appreciated as researchers are discovering that glycosylation is not only protein, cell or tissue specific, but is additionally influenced by individual genetics and environmental factors. Functional glycomics and glycoproteomics are emerging as a central field in systems biology and will continue to be a key focus in discerning health and disease.


Biotherapeutics Cancer Glycoproteomics Glycosylation Systems biology 



antibody-dependent cell mediated cytotoxicity




α1-acid glycoprotein


cross reactive carbohydrate determinant


congenital disorders of glycosylation


capillary electrophoresis


carcinoembryonic antigen


Chinese hamster ovary


collision induced dissociation




excitatory amino acid transporters


epidermal growth factor receptor




endoplasmic reticulum


enzyme replacement therapy


electrospray ionization


Fc-gamma receptor


Food and Drug Administration
























glucose unit


genome-wide association study




hepatocellular carcinomas


β-human chorionic gonadotrophin


Hydrophilic interaction chromatography


high performance liquid chromatography


immunoglobulin G






lipid-linked oligosaccharide


lysosomal storage disease


matrix assisted laser desorption ioziation




mannose-binding lectin


mass spectrometry


sequential mass spectrometry


N-glycolylneuraminic acid


N-acetylneuraminic acid


natural killer


nuclear magnetic resonance




porous graphitized carbon

PNGase F

peptide-N-glycosidase F


prostate specific antigen


rheumatoid arthritis

RNase 1

ribonuclease 1


reverse phase-HPLC


systemic lupus erythematosus


sialyl Lewisa


sialyl Lewisy


β-galactoside α(2,3)-sialyltransferase


α(2,8)-sialyltransferase II


α(2,8)-sialyltransferase IV


transforming growth factor-β receptor


time of flight


weak anion exchange








2D difference gel electrophoresis


2D gel electrophoresis


  1. 1.
    Varki A (1993) Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3:97–130PubMedCrossRefGoogle Scholar
  2. 2.
    Griffitts JS et al (2005) Glycolipids as receptors for Bacillus thuringiensis crystal toxin. Science 307:922–925PubMedCrossRefGoogle Scholar
  3. 3.
    Fuster MM, Esko JD (2005) The sweet and sour of cancer: glycans as novel therapeutic targets. Nat Rev Cancer 5:526–542PubMedCrossRefGoogle Scholar
  4. 4.
    Marek KW, Vijay IK, Marth JD (1999) A recessive deletion in the GlcNAc-1-phosphotransferase gene results in peri-implantation embryonic lethality. Glycobiology 9:1263–1271PubMedCrossRefGoogle Scholar
  5. 5.
    Matthijs G, Schollen E, Van Schaftingen E, Cassiman JJ, Jaeken J (1998) Lack of homozygotes for the most frequent disease allele in carbohydrate-deficient glycoprotein syndrome type 1A. Am J Hum Genet 62:542–550PubMedCrossRefGoogle Scholar
  6. 6.
    Apweiler R, Hermjakob H, Sharon N (1999) On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta 1473:4–8PubMedGoogle Scholar
  7. 7.
    Laine RA (1994) A calculation of all possible oligosaccharide isomers both branched and linear yields 1.05×10(12) structures for a reducing hexasaccharide: the Isomer Barrier to development of single-method saccharide sequencing or synthesis systems. Glycobiology 4:759–767PubMedCrossRefGoogle Scholar
  8. 8.
    Opat AS, van Vliet C, Gleeson PA (2001) Trafficking and localisation of resident Golgi glycosylation enzymes. Biochimie 83:763–773PubMedCrossRefGoogle Scholar
  9. 9.
    Hossler P, Mulukutla BC, Hu WS (2007) Systems analysis of N-glycan processing in mammalian cells. PLoS ONE 2:e713PubMedCrossRefGoogle Scholar
  10. 10.
    Srivastava S (2008) Move over proteomics, here comes glycomics. J Proteome Res 7:1799PubMedCrossRefGoogle Scholar
  11. 11.
    Dove A (2001) The bittersweet promise of glycobiology. Nat Biotechnol 19:913–917PubMedCrossRefGoogle Scholar
  12. 12.
    Schachter H et al (2002) Functional post-translational proteomics approach to study the role of N-glycans in the development of Caenorhabditis elegans. Biochem Soc Symp (69):1–21Google Scholar
  13. 13.
    Raman R, Raguram S, Venkataraman G, Paulson JC, Sasisekharan R (2005) Glycomics: an integrated systems approach to structure-function relationships of glycans. Nat Methods 2:817–824PubMedCrossRefGoogle Scholar
  14. 14.
    Varki A (1999) Essentials of glycobiology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  15. 15.
    North SJ et al (2010) Glycomics profiling of Chinese hamster ovary (CHO) cell glycosylation mutants reveals N-glycans of a novel size and complexity. J Biol Chem 285:5759–5775PubMedCrossRefGoogle Scholar
  16. 16.
    Schroder M, Kaufman RJ (2005) The mammalian unfolded protein response. Annu Rev Biochem 74:739–789PubMedCrossRefGoogle Scholar
  17. 17.
    Menon KM, Jaffe RB (1973) Chorionic gonadotropin sensitive adenylate cyclase in human term placenta. J Clin Endocrinol Metab 36:1104–1109PubMedCrossRefGoogle Scholar
  18. 18.
    Erbayraktar S et al (2003) Asialoerythropoietin is a nonerythropoietic cytokine with broad neuroprotective activity in vivo. Proc Natl Acad Sci USA 100:6741–6746PubMedCrossRefGoogle Scholar
  19. 19.
    Takeuchi M, Kobata A (1991) Structures and functional roles of the sugar chains of human erythropoietins. Glycobiology 1:337–346PubMedCrossRefGoogle Scholar
  20. 20.
    Chandrasekaran A, Srinivasan A, Raman R, Viswanathan K, Raguram S, Tumpey TM, Sasisekharan V, Sasisekharan R (2008) Glycan topology determines human adaptation of avian H5N1 virus hemagglutinin. Nat Biotechnol 26:107–113PubMedCrossRefGoogle Scholar
  21. 21.
    Wada Y et al (2010) Comparison of methods for profiling O-glycosylation: HUPO Human Disease Glycomics/Proteome Initiative Multi-Institutional Study of IgA1. Mol Cell Proteomics 9:719–727PubMedCrossRefGoogle Scholar
  22. 22.
    Tissot B et al (2009) Glycoproteomics: past, present and future. FEBS Lett 583:1728–1735PubMedCrossRefGoogle Scholar
  23. 23.
    Tackenberg B, Jelcic I, Baerenwaldt A, Oertel WH, Sommer N, Nimmerjahn F, Lunemann JD (2009) Impaired inhibitory Fcgamma receptor IIB expression on B cells in chronic inflammatory demyelinating polyneuropathy. Proc Natl Acad Sci USA 106:4788–4792PubMedCrossRefGoogle Scholar
  24. 24.
    An HJ, Froehlich JW, Lebrilla CB (2009) Determination of glycosylation sites and site-specific heterogeneity in glycoproteins. Curr Opin Chem Biol 13:421–426PubMedCrossRefGoogle Scholar
  25. 25.
    Saldova R et al (2007) Ovarian cancer is associated with changes in glycosylation in both acute-phase proteins and IgG. Glycobiology 17:1344–1356PubMedCrossRefGoogle Scholar
  26. 26.
    Harvey DJ (2005) Fragmentation of negative ions from carbohydrates: part 1. Use of nitrate and other anionic adducts for the production of negative ion electrospray spectra from N-linked carbohydrates. J Am Soc Mass Spectrom 16:622–630PubMedCrossRefGoogle Scholar
  27. 27.
    Harvey DJ (2005) Fragmentation of negative ions from carbohydrates: part 2. Fragmentation of high-mannose N-linked glycans. J Am Soc Mass Spectrom 16:631–646PubMedCrossRefGoogle Scholar
  28. 28.
    Harvey DJ (2005) Fragmentation of negative ions from carbohydrates: part 3. Fragmentation of hybrid and complex N-linked glycans. J Am Soc Mass Spectrom 16:647–659PubMedCrossRefGoogle Scholar
  29. 29.
    Prien JM, Ashline DJ, Lapadula AJ, Zhang H, Reinhold VN (2009) The high mannose glycans from bovine ribonuclease B isomer characterization by ion trap MS. J Am Soc Mass Spectrom 20:539–556PubMedCrossRefGoogle Scholar
  30. 30.
    Hanneman AJ, Rosa JC, Ashline D, Reinhold VN (2006) Isomer and glycomer complexities of core GlcNAcs in Caenorhabditis elegans. Glycobiology 16:874–890PubMedCrossRefGoogle Scholar
  31. 31.
    Ashline D, Singh S, Hanneman A, Reinhold V (2005) Congruent strategies for carbohydrate sequencing. 1. Mining structural details by MSn. Anal Chem 77:6250–6262PubMedCrossRefGoogle Scholar
  32. 32.
    Prien JM, Huysentruyt LC, Ashline DJ, Lapadula AJ, Seyfried TN, Reinhold VN (2008) Differentiating N-linked glycan structural isomers in metastatic and nonmetastatic tumour cells using sequential mass spectrometry. Glycobiology 18:353–366PubMedCrossRefGoogle Scholar
  33. 33.
    Zaia J (2008) Mass spectrometry and the emerging field of glycomics. Chem Biol 15:881–892PubMedCrossRefGoogle Scholar
  34. 34.
    Wheeler SF, Domann P, Harvey DJ (2009) Derivatization of sialic acids for stabilization in matrix-assisted laser desorption/ionization mass spectrometry and concomitant differentiation of alpha(2 → 3)- and alpha(2 → 6)-isomers. Rapid Commun Mass Spectrom 23:303–312PubMedCrossRefGoogle Scholar
  35. 35.
    Ashline DJ, Lapadula AJ, Liu YH, Lin M, Grace M, Pramanik B, Reinhold VN (2007) Carbohydrate structural isomers analyzed by sequential mass spectrometry. Anal Chem 79:3830–3842PubMedCrossRefGoogle Scholar
  36. 36.
    Royle L et al (2008) HPLC-based analysis of serum N-glycans on a 96-well plate platform with dedicated database software. Analytical Biochemistry 376:1–12PubMedCrossRefGoogle Scholar
  37. 37.
    Guile GR, Rudd PM, Wing DR, Prime SB, Dwek RA (1996) A rapid high-resolution high-performance liquid chromatographic method for separating glycan mixtures and analyzing oligosaccharide profiles. Anal Biochem 240:210–226PubMedCrossRefGoogle Scholar
  38. 38.
    Anumula KR (2006) Advances in fluorescence derivatization methods for high-performance liquid chromatographic analysis of glycoprotein carbohydrates. Anal Biochem 350:1–23PubMedCrossRefGoogle Scholar
  39. 39.
    Anumula KR (2000) High-sensitivity and high-resolution methods for glycoprotein analysis. Anal Biochem 283:17–26PubMedCrossRefGoogle Scholar
  40. 40.
    Nimmerjahn A (2009) Astrocytes going live: advances and challenges. J Physiol 587:1639–1647PubMedCrossRefGoogle Scholar
  41. 41.
    Jacobs JM, Adkins JN, Qian WJ, Liu T, Shen Y, Camp DG 2nd, Smith RD (2005) Utilizing human blood plasma for proteomic biomarker discovery. J Proteome Res 4:1073–1085PubMedCrossRefGoogle Scholar
  42. 42.
    Gorg A, Weiss W, Dunn MJ (2004) Current two-dimensional electrophoresis technology for proteomics. Proteomics 4:3665–3685PubMedCrossRefGoogle Scholar
  43. 43.
    Unlu M, Morgan ME, Minden JS (1997) Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18:2071–2077PubMedCrossRefGoogle Scholar
  44. 44.
    Byrne JC et al (2009) 2D-DIGE as a strategy to identify serum markers for the progression of prostate cancer. J Proteome Res 8:942–957PubMedCrossRefGoogle Scholar
  45. 45.
    Hart C, Schulenberg B, Steinberg TH, Leung WY, Patton WF (2003) Detection of glycoproteins in polyacrylamide gels and on electroblots using Pro-Q Emerald 488 dye, a fluorescent periodate Schiff-base stain. Electrophoresis 24:588–598PubMedCrossRefGoogle Scholar
  46. 46.
    Partridge EA et al (2004) Regulation of cytokine receptors by Golgi N-glycan processing and endocytosis. Science 306:120–124PubMedCrossRefGoogle Scholar
  47. 47.
    Yoshimura M, Ihara Y, Matsuzawa Y, Taniguchi N (1996) Aberrant glycosylation of E-cadherin enhances cell-cell binding to suppress metastasis. J Biol Chem 271:13811–13815PubMedCrossRefGoogle Scholar
  48. 48.
    Yamashita K, Ohkura T, Tachibana Y, Takasaki S, Kobata A (1984) Comparative study of the oligosaccharides released from baby hamster kidney cells and their polyoma transformant by hydrazinolysis. J Biol Chem 259:10834–10840PubMedGoogle Scholar
  49. 49.
    Pierce M, Arango J (1986) Rous sarcoma virus-transformed baby hamster kidney cells express higher levels of asparagine-linked tri- and tetraantennary glycopeptides containing [GlcNAc-beta (1,6)Man-alpha (1,6)Man] and poly-N-acetyllactosamine sequences than baby hamster kidney cells. J Biol Chem 261:10772–10777PubMedGoogle Scholar
  50. 50.
    Granovsky M, Fata J, Pawling J, Muller WJ, Khokha R, Dennis JW (2000) Suppression of tumour growth and metastasis in Mgat5-deficient mice. Nat Med 6:306–312PubMedCrossRefGoogle Scholar
  51. 51.
    Tsui KH, Chang PL, Feng TH, Chung LC, Sung HC, Juang HH (2008) Evaluating the function of matriptase and N-acetylglucosaminyltransferase V in prostate cancer metastasis. Anticancer Res 28:1993–1999PubMedGoogle Scholar
  52. 52.
    Fernandes B, Sagman U, Auger M, Demetrio M, Dennis JW (1991) Beta 1-6 branched oligosaccharides as a marker of tumour progression in human breast and colon neoplasia. Cancer Res 51:718–723PubMedGoogle Scholar
  53. 53.
    Seelentag WK, Li WP, Schmitz SF, Metzger U, Aeberhard P, Heitz PU, Roth J (1998) Prognostic value of beta1,6-branched oligosaccharides in human colorectal carcinoma. Cancer Res 58:5559–5564PubMedGoogle Scholar
  54. 54.
    Saito T, Miyoshi E, Sasai K, Nakano N, Eguchi H, Honke K, Taniguchi N (2002) A secreted type of beta 1,6-N-acetylglucosaminyltransferase V (GnT-V) induces tumour angiogenesis without mediation of glycosylation: a novel function of GnT-V distinct from the original glycosyltransferase activity. J Biol Chem 277:17002–17008PubMedCrossRefGoogle Scholar
  55. 55.
    Saito H et al (1994) cDNA cloning and chromosomal mapping of human N-acetylglucosaminyltransferase V+. Biochem Biophys Res Commun 198:318–327PubMedCrossRefGoogle Scholar
  56. 56.
    Cornil I, Kerbel RS, Dennis JW (1990) Tumour cell surface beta 1-4-linked galactose binds to lectin(s) on microvascular endothelial cells and contributes to organ colonization. J Cell Biol 111:773–781PubMedCrossRefGoogle Scholar
  57. 57.
    Sato Y et al (2001) Overexpression of N-acetylglucosaminyltransferase III enhances the epidermal growth factor-induced phosphorylation of ERK in HeLaS3 cells by up-regulation of the internalization rate of the receptors. J Biol Chem 276:11956–11962PubMedCrossRefGoogle Scholar
  58. 58.
    Kumamoto K, Goto Y, Sekikawa K, Takenoshita S, Ishida N, Kawakita M, Kannagi R (2001) Increased expression of UDP-galactose transporter messenger RNA in human colon cancer tissues and its implication in synthesis of Thomsen-Friedenreich antigen and sialyl Lewis A/X determinants. Cancer Res 61:4620–4627PubMedGoogle Scholar
  59. 59.
    Zipin A et al (2004) Tumour-microenvironment interactions: the fucose-generating FX enzyme controls adhesive properties of colorectal cancer cells. Cancer Res 64:6571–6578PubMedCrossRefGoogle Scholar
  60. 60.
    Moriwaki K, Noda K, Nakagawa T, Asahi M, Yoshihara H, Taniguchi N, Hayashi N, Miyoshi E (2007) A high expression of GDP-fucose transporter in hepatocellular carcinoma is a key factor for increases in fucosylation. Glycobiology 17:1311–1320PubMedCrossRefGoogle Scholar
  61. 61.
    Shields RL, Lai J, Keck R, O’Connell LY, Hong K, Meng YG, Weikert SH, Presta LG (2002) Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular toxicity. J Biol Chem 277:26733–26740PubMedCrossRefGoogle Scholar
  62. 62.
    Taketa K et al (1993) A collaborative study for the evaluation of lectin-reactive alpha-fetoproteins in early detection of hepatocellular carcinoma. Cancer Res 53:5419–5423PubMedGoogle Scholar
  63. 63.
    Wang X, Gu J, Ihara H, Miyoshi E, Honke K, Taniguchi N (2006) Core fucosylation regulates epidermal growth factor receptor-mediated intracellular signaling. J Biol Chem 281:2572–2577PubMedCrossRefGoogle Scholar
  64. 64.
    Osumi D et al (2009) Core fucosylation of E-cadherin enhances cell-cell adhesion in human colon carcinoma WiDr cells. Cancer Sci 100:888–895PubMedCrossRefGoogle Scholar
  65. 65.
    Crocker PR, Varki A (2001) Siglecs, sialic acids and innate immunity. Trends Immunol 22:337–342PubMedCrossRefGoogle Scholar
  66. 66.
    Feizi T (2000) Carbohydrate-mediated recognition systems in innate immunity. Immunol Rev 173:79–88PubMedCrossRefGoogle Scholar
  67. 67.
    Kudo T, Ikehara Y, Togayachi A, Morozumi K, Watanabe M, Nakamura M, Nishihara S, Narimatsu H (1998) Up-regulation of a set of glycosyltransferase genes in human colorectal cancer. Lab Invest 78:797–811PubMedGoogle Scholar
  68. 68.
    Imai Y, Lasky LA, Rosen SD (1992) Further characterization of the interaction between L-selectin and its endothelial ligands. Glycobiology 2:373–381PubMedCrossRefGoogle Scholar
  69. 69.
    Sperandio M, Gleissner CA, Ley K (2009) Glycosylation in immune cell trafficking. Immunol Rev 230:97–113PubMedCrossRefGoogle Scholar
  70. 70.
    Kannagi R (2001) Transcriptional regulation of expression of carbohydrate ligands for cell adhesion molecules in the selectin family. Adv Exp Med Biol 491:267–278PubMedGoogle Scholar
  71. 71.
    Miyahara R, Tanaka F, Nakagawa T, Matsuoka K, Isii K, Wada H (2001) Expression of neural cell adhesion molecules (polysialylated form of neural cell adhesion molecule and L1-cell adhesion molecule) on resected small cell lung cancer specimens: in relation to proliferation state. J Surg Oncol 77:49–54PubMedCrossRefGoogle Scholar
  72. 72.
    Tanaka F et al (2000) Expression of polysialic acid and STX, a human polysialyltransferase, is correlated with tumour progression in non-small cell lung cancer. Cancer Res 60:3072–3080PubMedGoogle Scholar
  73. 73.
    Narita T, Funahashi H, Satoh Y, Watanabe T, Sakamoto J, Takagi H (1993) Association of expression of blood group-related carbohydrate antigens with prognosis in breast cancer. Cancer 71:3044–3053PubMedCrossRefGoogle Scholar
  74. 74.
    Nakagoe T et al (2000) Expression of Lewis(a), sialyl Lewis(a), Lewis(x) and sialyl Lewis(x) antigens as prognostic factors in patients with colorectal cancer. Can J Gastroenterol 14:753–760PubMedGoogle Scholar
  75. 75.
    Ogawa J-I, Sano A, Inoue H, Koide S (1995) Expression of Lewis-related antigen and prognosis in stage I non – small cell lung cancer. Ann Thorac Surg 59:412–415PubMedCrossRefGoogle Scholar
  76. 76.
    Saldova R, Wormald MR, Dwek RA, Rudd PM (2008) Glycosylation changes on serum glycoproteins in ovarian cancer may contribute to disease pathogenesis. Dis Markers 25:219–232PubMedGoogle Scholar
  77. 77.
    Arnold JN, Saldova R, Abd Hamid UM, Rudd PM (2008) Evaluation of the serum N-linked glycome for the diagnosis of cancer and chronic inflammation. Proteomics 8:3284–3293PubMedCrossRefGoogle Scholar
  78. 78.
    Gornik O, Lauc G (2008) Glycosylation of serum proteins in inflammatory diseases. Dis Markers 25:267–278PubMedGoogle Scholar
  79. 79.
    Schmid K, Nimerg RB, Kimura A, Yamaguchi H, Binette JP (1977) The carbohydrate units of human plasma alpha1-acid glycoprotein. Biochim Biophys Acta 492:291–302PubMedGoogle Scholar
  80. 80.
    Laine A, Hayem A (1981) Purification and characterization of alpha 1-antichymotrypsin from human pleural fluid and human serum. Biochim Biophys Acta 668:429–438PubMedGoogle Scholar
  81. 81.
    Malhotra R, Wormald MR, Rudd PM, Fischer PB, Dwek RA, Sim RB (1995) Glycosylation changes of IgG associated with rheumatoid arthritis can activate complement via the mannose-binding protein. Nat Med 1:237–243PubMedCrossRefGoogle Scholar
  82. 82.
    Umana P, Jean-Mairet J, Moudry R, Amstutz H, Bailey JE (1999) Engineered glycoforms of an antineuroblastoma IgG1 with optimized antibody-dependent cellular cytotoxic activity. Nat Biotechnol 17:176–180PubMedCrossRefGoogle Scholar
  83. 83.
    Kaneko Y, Nimmerjahn F, Ravetch JV (2006) Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science 313:670–673PubMedCrossRefGoogle Scholar
  84. 84.
    Axford JS, Sumar N, Alavi A, Isenberg DA, Young A, Bodman KB, Roitt IM (1992) Changes in normal glycosylation mechanisms in autoimmune rheumatic disease. J Clin Invest 89:1021–1031PubMedCrossRefGoogle Scholar
  85. 85.
    Omtvedt LA, Royle L, Husby G, Sletten K, Radcliffe CM, Harvey DJ, Dwek RA, Rudd PM (2006) Glycan analysis of monoclonal antibodies secreted in deposition disorders indicates that subsets of plasma cells differentially process IgG glycans. Arthritis Rheum 54:3433–3440PubMedCrossRefGoogle Scholar
  86. 86.
    Kanoh Y, Mashiko T, Danbara M, Takayama Y, Ohtani S, Egawa S, Baba S, Akahoshi T (2004) Changes in serum IgG oligosaccharide chains with prostate cancer progression. Anticancer Res 24:3135–3139PubMedGoogle Scholar
  87. 87.
    Kanoh Y, Mashiko T, Danbara M, Takayama Y, Ohtani S, Imasaki T, Abe T, Akahoshi T (2004) Analysis of the oligosaccharide chain of human serum immunoglobulin g in patients with localized or metastatic cancer. Oncology 66:365–370PubMedCrossRefGoogle Scholar
  88. 88.
    Parekh RB et al (1985) Association of rheumatoid arthritis and primary osteoarthritis with changes in the glycosylation pattern of total serum IgG. Nature 316:452–457PubMedCrossRefGoogle Scholar
  89. 89.
    Holland M et al (2002) Hypogalactosylation of serum IgG in patients with ANCA-associated systemic vasculitis. Clin Exp Immunol 129:183–190PubMedCrossRefGoogle Scholar
  90. 90.
    Matsumoto A, Shikata K, Takeuchi F, Kojima N, Mizuochi T (2000) Autoantibody activity of IgG rheumatoid factor increases with decreasing levels of galactosylation and sialylation. J Biochem 128:621–628PubMedGoogle Scholar
  91. 91.
    Jacobs JM, Adkins JN, Qian W-J, Liu T, Shen Y, Camp DG, Smith RD (2005) Utilizing human blood plasma for proteomic biomarker discovery. J Proteome Res 4:1073–1085PubMedCrossRefGoogle Scholar
  92. 92.
    Oesterling JE (1991) Prostate specific antigen: a critical assessment of the most useful tumour marker for adenocarcinoma of the prostate. J Urol 145:907–923PubMedGoogle Scholar
  93. 93.
    Peracaula R, Tabares G, Royle L, Harvey DJ, Dwek RA, Rudd PM, de Llorens R (2003) Altered glycosylation pattern allows the distinction between prostate-specific antigen (PSA) from normal and tumour origins. Glycobiology 13:457–470PubMedCrossRefGoogle Scholar
  94. 94.
    Ohyama C, Hosono M, Nitta K, Oh-eda M, Yoshikawa K, Habuchi T, Arai Y, Fukuda M (2004) Carbohydrate structure and differential binding of prostate specific antigen to Maackia amurensis lectin between prostate cancer and benign prostate hypertrophy. Glycobiology 14:671–679PubMedCrossRefGoogle Scholar
  95. 95.
    Meany DL, Zhang Z, Sokoll LJ, Zhang H, Chan DW (2008) Glycoproteomics for prostate cancer detection: changes in serum PSA glycosylation patterns. J Proteome Res 8:613–619CrossRefGoogle Scholar
  96. 96.
    Weickmann JL, Olson EM, Glitz DG (1984) Immunological assay of pancreatic ribonuclease in serum as an indicator of pancreatic cancer. Cancer Res 44:1682–1687PubMedGoogle Scholar
  97. 97.
    Barrabes S et al (2007) Glycosylation of serum ribonuclease 1 indicates a major endothelial origin and reveals an increase in core fucosylation in pancreatic cancer. Glycobiology 17:388–400PubMedCrossRefGoogle Scholar
  98. 98.
    Varma R, Hoshino AY (1980) Serum glycoproteins in schizophrenia. Carbohydr Res 82:343–351PubMedCrossRefGoogle Scholar
  99. 99.
    Delves PJ (1998) The role of glycosylation in autoimmune disease. Autoimmunity 27:239–253PubMedCrossRefGoogle Scholar
  100. 100.
    Raju TS (2008) Terminal sugars of Fc glycans influence antibody effector functions of IgGs. Curr Opin Immunol 20:471–478PubMedCrossRefGoogle Scholar
  101. 101.
    Nezlin R, Ghetie V (2004) Interactions of immunoglobulins outside the antigen-combining site. Adv Immunol 82:155–215PubMedCrossRefGoogle Scholar
  102. 102.
    Mullinax F, Mullinax GL (1975) Abnormality of Igg structure in rheumatoid-arthritis and systemic lupus-erythematosus. Arthritis Rheum 18:417–418Google Scholar
  103. 103.
    van Zeben D, Rook GA, Hazes JM, Zwinderman AH, Zhang Y, Ghelani S, Rademacher TW, Breedveld FC (1994) Early agalactosylation of IgG is associated with a more progressive disease course in patients with rheumatoid arthritis: results of a follow-up study. Br J Rheumatol 33:36–43PubMedCrossRefGoogle Scholar
  104. 104.
    Bauer D, Haroutunian V, Meador-Woodruff JH, McCullumsmith RE (2009) Abnormal glycosylation of EAAT1 and EAAT2 in prefrontal cortex of elderly patients with schizophrenia. Schizophr Res 117:92–98PubMedCrossRefGoogle Scholar
  105. 105.
    Yazawa S, Tanaka S, Nishimura T, Miyanaga K, Kochibe N (1999) Plasma alpha1,3-fucosyltransferase deficiency in schizophrenia. Exp Clin Immunogenet 16:125–130PubMedCrossRefGoogle Scholar
  106. 106.
    Maguire TM, Thakore J, Dinan TG, Hopwood S, Breen KC (1997) Plasma sialyltransferase levels in psychiatric disorders as a possible indicator of HPA axis function. Biol Psychiatry 41:1131–1136PubMedCrossRefGoogle Scholar
  107. 107.
    Haeuptle MA, Hennet T (2009) Congenital disorders of glycosylation: an update on defects affecting the biosynthesis of dolichol-linked oligosaccharides. Hum Mutat 30:1628–1641PubMedCrossRefGoogle Scholar
  108. 108.
    Freeze HH, Westphal V (2001) Balancing N-linked glycosylation to avoid disease. Biochimie 83:791–799PubMedCrossRefGoogle Scholar
  109. 109.
    Eklund EA, Freeze HH (2006) The congenital disorders of glycosylation: a multifaceted group of syndromes. NeuroRx 3:254–263PubMedCrossRefGoogle Scholar
  110. 110.
    Prietsch V et al (2002) A new case of CDG-x with stereotyped dystonic hand movements and optic atrophy. J Inherit Metab Dis 25:126–130PubMedCrossRefGoogle Scholar
  111. 111.
    Mahant S, Feigenbaum A (2006) A child with an underrecognized form of developmental delay: a congenital disorder of glycosylation. CMAJ 175:1369PubMedGoogle Scholar
  112. 112.
    Kjaergaard S, Schwartz M, Skovby F (2001) Congenital disorder of glycosylation type Ia (CDG-Ia): phenotypic spectrum of the R141H/F119L genotype. Arch Dis Child 85:236–239PubMedCrossRefGoogle Scholar
  113. 113.
    Schollen E, Kjaergaard S, Martinsson T, Vuillaumier-Barrot S, Dunoe M, Keldermans L, Seta N, Matthijs G (2004) Increased recurrence risk in congenital disorders of glycosylation type Ia (CDG-Ia) due to a transmission ratio distortion. J Med Genet 41:877–880PubMedCrossRefGoogle Scholar
  114. 114.
    Schollen E, Kjaergaard S, Legius E, Schwartz M, Matthijs G (2000) Lack of Hardy-Weinberg equilibrium for the most prevalent PMM2 mutation in CDG-Ia (congenital disorders of glycosylation type Ia). Eur J Hum Genet 8:367–371PubMedCrossRefGoogle Scholar
  115. 115.
    Matthijs G et al (2000) Mutations in PMM2 that cause congenital disorders of glycosylation, type Ia (CDG-Ia). Hum Mutat 16:386–394PubMedCrossRefGoogle Scholar
  116. 116.
    de Lonlay P et al (2001) A broad spectrum of clinical presentations in congenital disorders of glycosylation I: a series of 26 cases. J Med Genet 38:14–19PubMedCrossRefGoogle Scholar
  117. 117.
    Fletcher JM (2006) Screening for lysosomal storage disorders – a clinical perspective. J Inherit Metab Dis 29:405–408PubMedCrossRefGoogle Scholar
  118. 118.
    Beck M (2007) New therapeutic options for lysosomal storage disorders: enzyme replacement, small molecules and gene therapy. Hum Genet 121:1–22PubMedCrossRefGoogle Scholar
  119. 119.
    Elstein D, Zimran A (2009) Review of the safety and efficacy of imiglucerase treatment of Gaucher disease. Biologics 3:407–417PubMedGoogle Scholar
  120. 120.
    Schiffmann R et al (2000) Infusion of alpha-galactosidase A reduces tissue globotriaosylceramide storage in patients with Fabry disease. Proc Natl Acad Sci U S A 97:365–370PubMedCrossRefGoogle Scholar
  121. 121.
    Van den Hout JM et al (2004) Long-term intravenous treatment of Pompe disease with recombinant human alpha-glucosidase from milk. Pediatrics 113:e448–e457PubMedCrossRefGoogle Scholar
  122. 122.
    Pastores GM (2008) Laronidase (Aldurazyme): enzyme replacement therapy for mucopolysaccharidosis type I. Expert Opin Biol Ther 8:1003–1009PubMedCrossRefGoogle Scholar
  123. 123.
    Clarke LA (2008) Idursulfase for the treatment of mucopolysaccharidosis II. Expert Opin Pharmacother 9:311–317PubMedCrossRefGoogle Scholar
  124. 124.
    Hopwood JJ, Bate G, Kirkpatrick P (2006) Galsulfase. Nat Rev Drug Discov 5:101–102PubMedCrossRefGoogle Scholar
  125. 125.
    Aggarwal S (2009) What’s fueling the biotech engine-2008. Nat Biotech 27:987–993CrossRefGoogle Scholar
  126. 126.
    Dennis L et al (2005) Functional analysis of the Campylobacter jejuni N-linked protein glycosylation pathway. Mol Microbiol 55:1695–1703CrossRefGoogle Scholar
  127. 127.
    Hossler P, Khattak SF, Li ZJ (2009) Optimal and consistent protein glycosylation in mammalian cell culture. Glycobiology 19:936–949PubMedCrossRefGoogle Scholar
  128. 128.
    Figueroa B Jr, Ailor E, Osborne D, Hardwick JM, Reff M, Betenbaugh MJ (2007) Enhanced cell culture performance using inducible anti-apoptotic genes E1B-19 K and Aven in the production of a monoclonal antibody with Chinese hamster ovary cells. Biotechnol Bioeng 97:877–892CrossRefGoogle Scholar
  129. 129.
    Lee YY, Wong KT, Tan J, Toh PC, Mao Y, Brusic V, Yap MG (2009) Overexpression of heat shock proteins (HSPs) in CHO cells for extended culture viability and improved recombinant protein production. J Biotechnol 143:34–43PubMedCrossRefGoogle Scholar
  130. 130.
    Peng RW, Fussenegger M (2009) Molecular engineering of exocytic vesicle traffic enhances the productivity of Chinese hamster ovary cells. Biotechnol Bioeng 102:1170–1181PubMedCrossRefGoogle Scholar
  131. 131.
    Peng RW, Guetg C, Tigges M, Fussenegger M (2010) The vesicle-trafficking protein munc18b increases the secretory capacity of mammalian cells. Metab Eng 12:18–25PubMedCrossRefGoogle Scholar
  132. 132.
    Muchmore EA, Milewski M, Varki A, Diaz S (1989) Biosynthesis of N-glycolyneuraminic acid. The primary site of hydroxylation of N-acetylneuraminic acid is the cytosolic sugar nucleotide pool. J Biol Chem 264:20216–20223PubMedGoogle Scholar
  133. 133.
    Tangvoranuntakul P, Gagneux P, Diaz S, Bardor M, Varki N, Varki A, Muchmore E (2003) Human uptake and incorporation of an immunogenic nonhuman dietary sialic acid. PNAS 100:12045–12050PubMedCrossRefGoogle Scholar
  134. 134.
    Bergwerff AA, Stroop CJ, Murray B, Holtorf AP, Pluschke G, Van Oostrum J, Kamerling JP, Vliegenthart JF (1995) Variation in N-linked carbohydrate chains in different batches of two chimeric monoclonal IgG1 antibodies produced by different murine SP2/0 transfectoma cell subclones. Glycoconj J 12:318–330PubMedCrossRefGoogle Scholar
  135. 135.
    Umana P, Jean-Mairet J, Moudry R, Amstutz H, Bailey JE (1999) Engineered glycoforms of an antineuroblastoma IgG1 with optimized antibody-dependent cellular cytotoxic activity. Nat Biotech 17:176–180CrossRefGoogle Scholar
  136. 136.
    Ferrara C, Brünker P, Suter T, Moser S, Püntener U, Umaña P (2006) Modulation of therapeutic antibody effector functions by glycosylation engineering: Influence of Golgi enzyme localization domain and co-expression of heterologous beta1, 4-N-acetylglucosaminyltransferase III and Golgi alpha-mannosidase II. Biotechnol Bioeng 93:851–861PubMedCrossRefGoogle Scholar
  137. 137.
    Trinchieri G (1989) Biology of natural killer cells. Adv Immunol 47:187–376PubMedCrossRefGoogle Scholar
  138. 138.
    Nimmerjahn F, Ravetch JV (2008) Fcgamma receptors as regulators of immune responses. Nat Rev Immunol 8:34–47PubMedCrossRefGoogle Scholar
  139. 139.
    Galili U (1989) Abnormal expression of alpha-galactosyl epitopes in man. A trigger for autoimmune processes? Lancet 2:358–361PubMedCrossRefGoogle Scholar
  140. 140.
    Bencurova M, Hemmer W, Focke-Tejkl M, Wilson IB, Altmann F (2004) Specificity of IgG and IgE antibodies against plant and insect glycoprotein glycans determined with artificial glycoforms of human transferrin. Glycobiology 14:457–466PubMedCrossRefGoogle Scholar
  141. 141.
    Geisler C, Aumiller JJ, Jarvis DL (2008) A fused lobes gene encodes the processing beta-N-acetylglucosaminidase in Sf9 cells. J Biol Chem 283:11330–11339PubMedCrossRefGoogle Scholar
  142. 142.
    Lehle L, Strahl S, Tanner W (2006) Protein glycosylation, conserved from yeast to man: a model organism helps elucidate congenital human diseases. Angew Chem Int Ed Engl 45:6802–6818PubMedCrossRefGoogle Scholar
  143. 143.
    Wildt S, Gerngross TU (2005) The humanization of N-glycosylation pathways in yeast. Nat Rev Microbiol 3:119–128PubMedCrossRefGoogle Scholar
  144. 144.
    Varki A (2009) Essentials of glycobiology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  145. 145.
    Fitchette-Laine AC et al (1997) N-glycans harboring the Lewis a epitope are expressed at the surface of plant cells. Plant J 12:1411–1417PubMedCrossRefGoogle Scholar
  146. 146.
    Chiba Y, Suzuki M, Yoshida S, Yoshida A, Ikenaga H, Takeuchi M, Jigami Y, Ichishima E (1998) Production of human compatible high mannose-type (Man5GlcNAc2) sugar chains in Saccharomyces cerevisiae. J Biol Chem 273:26298–26304PubMedCrossRefGoogle Scholar
  147. 147.
    Herscovics A (2001) Structure and function of Class I alpha 1,2-mannosidases involved in glycoprotein synthesis and endoplasmic reticulum quality control. Biochimie 83:757–762PubMedCrossRefGoogle Scholar
  148. 148.
    Choi BK et al (2003) Use of combinatorial genetic libraries to humanize N-linked glycosylation in the yeast Pichia pastoris. PNAS 100:5022–5027PubMedCrossRefGoogle Scholar
  149. 149.
    Bobrowicz P et al (2004) Engineering of an artificial glycosylation pathway blocked in core oligosaccharide assembly in the yeast Pichia pastoris: production of complex humanized glycoproteins with terminal galactose. Glycobiology 14:757–766PubMedCrossRefGoogle Scholar
  150. 150.
    Hamilton SR et al (2006) Humanization of yeast to produce complex terminally sialylated glycoproteins. Science 313:1441–1443PubMedCrossRefGoogle Scholar
  151. 151.
    Hollister JR, Jarvis DL (2001) Engineering lepidopteran insect cells for sialoglycoprotein production by genetic transformation with mammalian β1,4-galactosyltransferase and α2,6-sialyltransferase genes. Glycobiology 11:1–9PubMedCrossRefGoogle Scholar
  152. 152.
    Hollister J, Grabenhorst E, Nimtz M, Conradt H, Jarvis DL (2002) Engineering the protein N-glycosylation pathway in insect cells for production of biantennary, complex N-glycans. Biochemistry 41:15093–15104PubMedCrossRefGoogle Scholar
  153. 153.
    Bardor M, Faveeuw C, Fitchette AC, Gilbert D, Galas L, Trottein F, Faye L, Lerouge P (2003) Immunoreactivity in mammals of two typical plant glyco-epitopes, core alpha(1,3)-fucose and core xylose. Glycobiology 13:427–434PubMedCrossRefGoogle Scholar
  154. 154.
    Rayon C, Cabanes-Macheteau M, Loutelier-Bourhis C, Salliot-Maire I, Lemoine J, Reiter WD, Lerouge P, Faye L (1999) Characterization of N-glycans from Arabidopsis. Application to a fucose-deficient mutant. Plant Physiol 119:725–734PubMedCrossRefGoogle Scholar
  155. 155.
    Frey AD, Karg SR, Kallio PT (2009) Expression of rat β(1,4)-N-acetylglucosaminyltransferase III in Nicotiana tabacum remodels the plant-specific N-glycosylation. Plant Biotechnol J 7:33–48PubMedCrossRefGoogle Scholar
  156. 156.
    Weise A, Altmann F, Rodriguez-Franco M, Sjoberg ER, Bäumer W, Launhardt H, Kietzmann M, Gorr G (2007) High-level expression of secreted complex glycosylated recombinant human erythropoietin in the Physcomitrella Δfuc-t -Δxyl-t mutant. Plant Biotechnol J 5:389–401PubMedCrossRefGoogle Scholar
  157. 157.
    Knezevic A et al (2009) Variability, heritability and environmental determinants of human plasma N-glycome. J Proteome Res 8:694–701PubMedCrossRefGoogle Scholar
  158. 158.
    Lauc G, Huffman J, Hayward C, Knezevic A, Polasek O, Gornik O, Vitart V, Kolcic I, Biloglav Z, Zgaga L, Hastie N, Wright A, Campbell H, Rudd P, Rudan I (2009) Genome-wide association study identifies FUT8 and ESR2 as co-regulators of a bi-antennary N-linked glycan A2 (GlcNAc2Man3GlcNAc2) in human plasma proteins. Available from Nature Precedings <>

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Weston B. Struwe
    • 1
    Email author
  • Eoin F.J. Cosgrave
    • 1
  • Jennifer C. Byrne
    • 1
  • Radka Saldova
    • 1
  • Pauline M. Rudd
    • 1
  1. 1.National Institute for Bioprocessing Research and Training, Dublin-Oxford Glycobiology GroupConway Institute for Biomolecular and Biomedical Sciences, University College DublinDublinIreland

Personalised recommendations