Advertisement

Glyco-engineering of Fc Glycans to Enhance the Biological Functions of Therapeutic IgGs

  • T. Shantha RajuEmail author
  • David M. Knight
  • Robert E. Jordan
Chapter
  • 827 Downloads

Abstract

Glycans N-linked to the Fc region of IgGs affect binding to various Fc receptors and C1q protein and therefore are important for IgG effector functions, including ADCC and CDC activities. Fc glycans are highly heterogeneous and the nature of this variation differs between species. Heterogeneity of Fc glycans arises from the presence or the absence of different terminal sugars, including sialic acid, galactose and N-acetylglucosamine, core fucose along with bisecting N-acetylglucosamine. To understand the influence of individual terminal sugar residues on serum half-life and antibody effector functions, it is necessary to prepare homogeneous IgG glycoforms. This chapter describes glycoengineering strategies to prepare IgG molecules containing homogeneous glycan chains in the Fc region and their significance in assessing IgG functions. The importance of selecting appropriate in vitro and/or in vivo conditions, including enzymes, buffers and cell culture conditions, to produce recombinant IgGs with homogeneous glycoforms is discussed.

Keywords

Immunoglobulins Antibody Glycosylation Glycans Glycoengineering Recombinant IgG 

Abbreviations

ADCC

antibody dependent cellular cytotoxicity

CDC

complement dependent cytotoxicity

CE-LIF

capillary electrophoresis with laser induced fluorescence detection

CHO

Chinese hamster ovary

CMP-Sia

cytidine monophosphate N-acetylneuraminic acid

DHB

2,5-Dihydroxybenzoic acid

EPO

erythropoetin

ESI-MS

electrospray ionization mass spectrometry

Fuc

fucose

Gal

galactose

GlcNAc

N-acetylglucosamine

GnT-III

N-acetylglucosaminyltransferase-III

IEC

ion exchange chromatography

IgG

immunoglobulin G

MALDI-TOF-MS

matrix-assisted laser/desorption ionization time-of-flight mass spectrometry

Man

mannose

PNGase F

peptide N-glycosidase F

rIgG

recombinant immunoglobulin G

RP-HPLC

reversed phase high-performance liquid chromatography

Sia

sialic acid (N-acetylneuraminic acid)

tPA

tissue plasminogen activator

UDP-Gal

uridine diphosphate galactose

UDP-GlcNAc

uridine diphosphate N-acetylglucosamine

α1,3GT

α-1,3-galactosyltransferase

α2,3ST

α-2,3-sialyltransferase

α2,6ST

α-2,6-sialyltransferase

β1,4GT

β-1,4-galactosyltransferase

References

  1. 1.
    Davies DR, Metzger H (1983) Structural basis of antibody function. Annu Rev Immunol 1:87–117CrossRefPubMedGoogle Scholar
  2. 2.
    Beale D, Feinstein A (1976) Structure and function of the constant regions of immunoglobulins. Q Rev Biophys 9:135–180CrossRefPubMedGoogle Scholar
  3. 3.
    Raju TS (2003) Glycosylation variations with expression systems and their impact on biological activity of therapeutic immunoglobulins. BioProcess Int 1(4):44–53Google Scholar
  4. 4.
    Wright A, Morrison SL (1997) Effect of glycosylation on antibody function: implications for genetic engineering. Trends Biotechnol 15(1):26–32CrossRefPubMedGoogle Scholar
  5. 5.
    Jefferis R (1991) Structure-function relationships in human immunoglobulins. Neth J Med 39(3–4):188–198PubMedGoogle Scholar
  6. 6.
    Jefferis R (1993) The glycosylation of antibody molecules: functional significance. Glycoconjugate J 10(5):358–361Google Scholar
  7. 7.
    Ryan MH, Petrone D, Nemeth JF, Barnathan E, Björck L, Jordan RE (2008) Proteolysis of purified IgGs by human and bacterial enzymes in vitro and the detection of specific proteolytic fragments of endogenous IgG in rheumatoid synovial fluid. Mol Immunol 45(7):1837–1846CrossRefPubMedGoogle Scholar
  8. 8.
    Brezski RJ, Vafa O, Petrone D, Tam SH, Powers G, Ryan MH, Luongo JL, Oberholtzer A, Knight DM, Jordan RE (2009) Tumor-associated and microbial proteases compromise host IgG effector functions by a single cleavage proximal to the hinge. Proc Natl Acad Sci U S A 106(42):17864–17869CrossRefPubMedGoogle Scholar
  9. 9.
    Jefferis R (2007) Antibody therapeutics: isotype and glycoform selection. Expert Opin Biol Ther 7(9):1401–1413CrossRefPubMedGoogle Scholar
  10. 10.
    Nimmerjahn F, Ravetch JV (2008) Fcgamma receptors as regulators of immune responses. Nat Rev Immunol 8(1):34–47CrossRefPubMedGoogle Scholar
  11. 11.
    Nimmerjahn F, Ravetch JV (2007) Fc-receptors as regulators of immunity. Adv Immunol 96:179–204CrossRefPubMedGoogle Scholar
  12. 12.
    Duncan AR, Winter G (1988) The binding site for C1q on IgG. Nature 332(6166):738–740CrossRefPubMedGoogle Scholar
  13. 13.
    Lencer WI, Blumberg RS (2005) A passionate kiss, then run: exocytosis and recycling of IgG by FcRn. Trends Cell Biol 15(1):5–9CrossRefPubMedGoogle Scholar
  14. 14.
    Lobo ED, Hansen RJ, Balthasar JP (2004) Antibody pharmacokinetics and pharmacodynamics. J Pharm Sci 93(11):2645–2668CrossRefPubMedGoogle Scholar
  15. 15.
    Roopenian DC, Akilesh S (2007) FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol 7(9):715–725CrossRefPubMedGoogle Scholar
  16. 16.
    Mizuochi T, Taniguchi T, Shimizu A, Kobata A (1982) Structural and numerical variations of the carbohydrate moiety of immunoglobulin G. J Immunol 129(5):2016–2020PubMedGoogle Scholar
  17. 17.
    Raju TS (2008) Terminal sugars of Fc glycans influence antibody effector functions of IgGs. Curr Opin Immunol 20:471–478CrossRefPubMedGoogle Scholar
  18. 18.
    Raju TS, Briggs JB, Borge SM, Jones AJ (2000) Species-specific variation in glycosylation of IgG: evidence for the species-specific sialylation and branch-specific galactosylation and importance for engineering recombinant glycoprotein therapeutics. Glycobiology 10(5):477–486CrossRefPubMedGoogle Scholar
  19. 19.
    Hamako J, Matsui T, Ozeki Y, Mizuochi T, Titani K (1993) Comparative studies of asparagine-linked sugar chains of immunoglobulin G from eleven mammalian species. Comp Biochem Physiol B 106(4):949–954CrossRefPubMedGoogle Scholar
  20. 20.
    Mimura Y, Ghirlando R, Sondermann P, Lund J, Jefferis R (2001) The molecular specificity of IgG-Fc interactions with Fc gamma receptors. Adv Exp Med Biol 495:49–53PubMedGoogle Scholar
  21. 21.
    Raju TS, Scallon BJ (2006) Glycosylation in the Fc domain of IgG increases resistance to proteolytic cleavage by papain. Biochem Biophys Res Commun 341(3):797–803CrossRefPubMedGoogle Scholar
  22. 22.
    Raju TS, Scallon B (2007) Fc Glycans terminated with N-acetylglucosamine residues increase antibody resistance to papain. Biotechnol Prog 33(4):964–971Google Scholar
  23. 23.
    Kobata A (2000) A journey to the world of glycobiology. Glycoconj J 17: 443–464CrossRefPubMedGoogle Scholar
  24. 24.
    Kornfeld R, Kornfeld S (1985) Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem 54:631–664CrossRefPubMedGoogle Scholar
  25. 25.
    Raju TS, Briggs JB, Chamow SM, Winkler ME, Jones AJ (2001) Glycoengineering of Therapeutic Glycoproteins: in vitro galactosylation and sialylation of glycoproteins with terminal N-acetylglucosamine and galactose residues. Biochemistry 40(30):8868–8876CrossRefPubMedGoogle Scholar
  26. 26.
    Raju TS, Lerner L, O’Connor JV (1996) Glycopinion: biological significance and methods for the analysis of complex carbohydrates of recombinant glycoproteins. Biotechnol Appl Biochem 24(Pt 3):191–194PubMedGoogle Scholar
  27. 27.
    Arnold JN, Wormald MR, Sim RB, Rudd PM, Dwek RA (2007) The Impact of glycosylation on the biological function and structure of human immunoglobulins. Annu Rev Immunol 25:21–50CrossRefPubMedGoogle Scholar
  28. 28.
    Burton DR, Boyd J, Brampton AD, Easterbrook S, Emanuel EJ, Novotny J, Rademacher TW, van Schravendijk MR, Sternberg MJ, Dwek RA (1980) The Clq receptor site on immunoglobulin G. Nature 288(5789):338–344CrossRefPubMedGoogle Scholar
  29. 29.
    Simmons LC, Reilly D, Klimowski L, Raju TS, Meng G, Sims P, Hong K, Shields RL, Damico LA, Rancatore P, Yansura DG (2002) Expression of full-length immunoglobulins in Escherichia coli: rapid and efficient production of aglycosylated antibodies. J Immunol Methods 263(1–2):133–147CrossRefPubMedGoogle Scholar
  30. 30.
    Jefferis R (2009) Aglycosylated antibodies and the methods of making and using them: WO2008030564. Expert Opin Ther Pat 19(1):101–105CrossRefPubMedGoogle Scholar
  31. 31.
    Raju TS (2000) Electrophoretic methods for the analysis of N-linked oligosaccharides. Anal Biochem 283(2):125–132CrossRefPubMedGoogle Scholar
  32. 32.
    Yamada E, Tsukamoto Y, Sasaki R, Yagyu K, Takahashi N (1997) Structural changes of immunoglobulin G oligosaccharides with age in healthy human serum. Glycoconj J 14(3): 401–405CrossRefPubMedGoogle Scholar
  33. 33.
    Parekh RB, Roitt IM, Isenberg DA, Dwek RA, Ansell BM, Rademacher TW (1988) Galactosylation of IgG associated oligosaccharides: reduction in patients with adult and juvenile onset rheumatoid arthritis and relation to disease activity. Lancet Apr 30;1(8592):966–969CrossRefGoogle Scholar
  34. 34.
    Alavi A, Axford J (1995) Evaluation of beta 1,4-galactosyltransferase in rheumatoid arthritis and its role in the glycosylation network associated with this disease. Glycoconj J 12:206–210CrossRefPubMedGoogle Scholar
  35. 35.
    Opdenakker G, Dillen C, Fiten P, Martens E, Van Aelst I, Van den Steen PE, Nelissen I, Starckx S, Descamps FJ, Hu J, Piccard H, Van Damme J, Wormald MR, Rudd PM, Dwek RA (2006) Remnant epitopes, autoimmunity and glycosylation. Biochim Biophys Acta 1760(4):610–615PubMedGoogle Scholar
  36. 36.
    Popko J, Marciniak J, Zalewska A, Maldyk P, Rogalski M, Zwierz K (2006) The activity of exoglycosidases in the synovial membrane and knee fluid of patients with rheumatoid arthritis and juvenile idiopathic arthritis. Scand J Rheumatol 35(3):189–192CrossRefPubMedGoogle Scholar
  37. 37.
    Rademacher TW, Jones RH, Williams PJ (1995) Significance and molecular basis for IgG glycosylation changes in rheumatoid arthritis. Adv Exp Med Biol 376:193–204PubMedGoogle Scholar
  38. 38.
    Routier FH, Hounsell EF, Rudd PM, Takahashi N, Bond A, Hay FC, Alavi A, Axford JS, Jefferis R (1998) Quantitation of the oligosaccharides of human serum igg from patients with rheumatoid arthritis: a critical evaluation of different methods. J Immunol Methods 213(2):113–130CrossRefPubMedGoogle Scholar
  39. 39.
    Tsuchiya N, Endo T, Shiota M, Kochibe N, Ito K, Kobata A (1994) Distribution of glycosylation abnormality among serum IgG subclasses from patients with rheumatoid arthritis. Clin Immunol Immunopathol 70(1): 47–50CrossRefPubMedGoogle Scholar
  40. 40.
    Routier FH, Davies MJ, Bergemann K, Hounsell EF (1997) The glycosylation pattern of humanized IgGI antibody (D1.3) expressed in CHO cells. Glycoconj J 14(2):201–207CrossRefPubMedGoogle Scholar
  41. 41.
    Weikert S, Papac D, Briggs J, Cowfer D, Tom S, Gawlitzek M, Lofgren J, Mehta S, Chisholm V, Modi N, Eppler S, Carroll K, Chamow S, Peers D, Berman P, Krummen L (1999) Engineering Chinese hamster ovary cells to maximize sialic acid content of recombinant glycoproteins. Nat Biotechnol 17(11):1116–1121CrossRefPubMedGoogle Scholar
  42. 42.
    Keck R, Nayak N, Lerner L, Raju S, Ma S, Schreitmueller T, Chamow S, Moorhouse K, Kotts C, Jones A (2008) Characterization of a complex glycoprotein whose variable metabolic clearance in humans is dependent on terminal N-acetylglucosamine content. Biologicals 36(1):49–60CrossRefPubMedGoogle Scholar
  43. 43.
    Jones AJ, Papac DI, Chin EH, Keck R, Baughman SA, Lin YS, Kneer J, Battersby JE (2007) Selective clearance of glycoforms of a complex glycoprotein pharmaceutical caused by terminal N-acetylglucosamine is similar in humans and cynomolgus monkeys. Glycobiology 7(5):529–540Google Scholar
  44. 44.
    Malhotra R, Wormald MR, Rudd PM, Fischer PB, Dwek RA, Sim RB (1995) Glycosylation changes of IgG associated with rheumatoid arthritis can activate complement via the mannose-binding protein. Nat Med 1(3):237–243CrossRefPubMedGoogle Scholar
  45. 45.
    Presta LG (2002) Engineering antibodies for therapy. Curr Pharm Biotechnol 3(3):237–256CrossRefPubMedGoogle Scholar
  46. 46.
    Presta LG (2006) Engineering of therapeutic antibodies to minimize immunogenicity and optimize function. Adv Drug Deliv Rev 58(5–6):640–656CrossRefPubMedGoogle Scholar
  47. 47.
    Sato R, Matsushita M, Miyata M, Sato Y, Kasukawa R, Fujita T (1997) Substances reactive with mannose-binding protein (MBP) in sera of patients with rheumatoid arthritis. Fukushima J Med Sci. 43(2):99–111PubMedGoogle Scholar
  48. 48.
    Hodoniczky J, Zheng YZ, James DC (2005) Control of recombinant monoclonal antibody effector functions by Fc N-glycan remodeling in vitro. Biotechnol Prog 21(6):1644–1652CrossRefPubMedGoogle Scholar
  49. 49.
    Stockert RJ, Morell AG, Ashwell G (1991) Structural characteristics and regulation of the asialoglycoprotein receptor. Targeted Diagn Ther 4:41–64PubMedGoogle Scholar
  50. 50.
    Ashwell G, Harford J (1982) Carbohydrate-specific receptors of the liver. Annu Rev Biochem 51:531–54CrossRefPubMedGoogle Scholar
  51. 51.
    Varki A (1996) “Unusual” modifications and variations of vertebrate oligosaccharides: are we missing the flowers for the trees? Glycobiology 6(7):707–710CrossRefPubMedGoogle Scholar
  52. 52.
    Scallon BJ, Tam SH, McCarthy SG, Cai AN, Raju TS (2007) Higher levels of sialylated Fc glycans in immunoglobulin G molecules can adversely impact functionality. Mol Immunol 44(7):1524–1534CrossRefPubMedGoogle Scholar
  53. 53.
    Kaneko Y, Nimmerjahn F, Ravetch JV (2006) Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science 313(5787):670–673CrossRefPubMedGoogle Scholar
  54. 54.
    Nimmerjahn F, Ravetch JV (2007) The antiinflammatory activity of IgG: the intravenous IgG paradox. J Exp Med 204(1):11–15CrossRefPubMedGoogle Scholar
  55. 55.
    Campbell C, Stanley P (1984) A dominant mutation to ricin resistance in Chinese hamster ovary cells induces UDP-GlcNAc: glycopeptide beta-4-N-acetylglucosaminyltransferase-III activity. J Biol Chem 259(21):13370–13378PubMedGoogle Scholar
  56. 56.
    Patnaik SK, Stanley P (2006) Lectin-resistant CHO glycosylation mutants. Methods Enzymol 416:159–182CrossRefPubMedGoogle Scholar
  57. 57.
    Umana P, Jean M, Moudry R, Amstutz H, Bailey JE (1999) Engineered glycoforms of an antineuroblastoma IgG1 with optimized antibody-dependent cellular cytotoxic activity. Nat Biotechnol 17(2):176–180CrossRefPubMedGoogle Scholar
  58. 58.
    Umana P, Jean M, Bailey JE (1999) Tetracycline-regulated over expression of glycosyltransferases in Chinese hamster ovary cells. Biotechnol Bioeng 65(5):542–549CrossRefPubMedGoogle Scholar
  59. 59.
    Davies J, Jiang L, Pan LZ, LaBarre MJ, Anderson D, Reff M (2001) Expression of GnT-III in a recombinant anti-CD20 CHO production cell line: expression of antibodies with altered glycoforms leads to an increase in ADCC through higher affinity for Fc gamma RIII. Biotechnol Bioeng 74(4):288–294CrossRefPubMedGoogle Scholar
  60. 60.
    Schuster M, Umana P, Ferrara C, Brünker P, Gerdes C, Waxenecker G, Wiederkum S, Schwager C, Loibner H, Himmler G, Mudde GC (2005) Improved effector functions of a therapeutic monoclonal Lewis Y-specific antibody by glycoform engineering. Cancer Res 65(17):7934–7941PubMedGoogle Scholar
  61. 61.
    Ferrara C, Brünker P, Suter T, Moser S, Püntener U, Umaña P (2006) Modulation of therapeutic antibody effector functions by glycosylation engineering: influence of Golgi enzyme localization domain and co-expression of heterologous beta1, 4-N-acetylglucosaminyltransferase III and Golgi alpha-mannosidase II. Biotechnol Bioeng 93(5):851–861CrossRefPubMedGoogle Scholar
  62. 62.
    Shields RL, Lai J, Keck R, Connell LY, Hong K, Meng YG, Weikert SH, Presta LG (2002) Lack of Fucose on human IgG1 N-linked oligosaccharide improves binding to human fcgamma RIII and antibody-dependent cellular toxicity. J Biol Chem 277(30):26733–26740CrossRefPubMedGoogle Scholar
  63. 63.
    Shinkawa T, Nakamura K, Yamane N, Shoji-Hosaka E, Kanda Y, Sakurada M, Uchida K, Anazawa H, Satoh M, Yamasaki M, Hanai N, Shitara K (2003) The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J Biol Chem 278(5):3466–3473CrossRefPubMedGoogle Scholar
  64. 64.
    Miyoshi E, Noda K, Yamaguchi Y, Inoue S, Ikeda Y, Wang W, Ko JH, Uozumi N, Li W, Taniguchi N (1999) The alpha1-6-fucosyltransferase gene and its biological significance. Biochim Biophys Acta 1473(1):9–20PubMedGoogle Scholar
  65. 65.
    Schachter H (1986) Biosynthetic controls that determine the branching and microheterogeneity of protein-bound oligosaccharides. Biochem Cell Biol 64(3):163–181CrossRefPubMedGoogle Scholar
  66. 66.
    Mimura Y, Lund J, Church S, Dong S, Li J, Goodall M, Jefferis R (2001) Butyrate increases production of human chimeric IgG in CHO-K1 cells whilst maintaining function and glycoform profile. J Immunol Methods 247(1–2):205–216CrossRefPubMedGoogle Scholar
  67. 67.
    Jefferis R (2007) Antibody therapeutics: isotype and glycoform selection. Expert Opin Biol Ther 7(9):1401–1413CrossRefPubMedGoogle Scholar
  68. 68.
    Imai-Nishiya H, Mori K, Inoue M, Wakitani M, Iida S, Shitara K, Satoh M (2007) Double knockdown of alpha1,6-fucosyltransferase (FUT8) and GDP-mannose 4,6-dehydratase (GMD) in antibody-producing cells: a new strategy for generating fully non-fucosylated therapeutic antibodies with enhanced ADCC. BMC Biotechnol 7:84CrossRefPubMedGoogle Scholar
  69. 69.
    Scallon B, McCarthy S, Radewonuk J, Cai A, Naso M, Raju TS, Capocasale R (2007) Quantitative in vivo comparisons of the Fc gamma receptor-dependent agonist activities of different fucosylation variants of an immunoglobulin G antibody. Int Immunopharmacol 7(6):761–772CrossRefPubMedGoogle Scholar
  70. 70.
    Wright A, Morrison SL (1994) Effect of altered CH2-associated carbohydrate structure on the functional properties and in vivo fate of chimeric mouse-human immunoglobulin G1. J Exp Med 180(3):1087–1096CrossRefPubMedGoogle Scholar
  71. 71.
    Wright A, Sato Y, Okada T, Chang K, Endo T, Morrison S (2000) In vivo trafficking and catabolism of IgG1 antibodies with Fc associated carbohydrates of differing structure. Glycobiology 10(12):1347–1355CrossRefPubMedGoogle Scholar
  72. 72.
    Millward TA, Heitzmann M, Bill K, Langle U, Schumacher P, Forrer K (2008) Effect of constant and variable domain glycosylation on pharmacokinetics of therapeutic antibodies in mice. Biologicals 36(1):41–47CrossRefPubMedGoogle Scholar
  73. 73.
    Zhou Q, Shankara S, Roy A, Qiu H, Estes S, McVie-Wylie A, Culm-Merdek K, Park A, Pan C, Edmunds T (2008) Development of a simple and rapid method for producing non-fucosylated oligomannose containing antibodies with increased effector function. Biotechnol Bioeng Feb 15;99(3):652–665CrossRefGoogle Scholar
  74. 74.
    Jin C, Altmann F, Strasser R, Mach L, Schähs M, Kunert R, Rademacher T, Glössl J, Steinkellner H (2008) A plant-derived human monoclonal antibody induces an anti-carbohydrate immune response in rabbits. Glycobiology 18(3):235–241CrossRefPubMedGoogle Scholar
  75. 75.
    Jin C, Hantusch B, Hemmer W, Stadlmann J, Altmann F (2008) Affinity of IgE and IgG against cross-reactive carbohydrate determinants on plant and insect glycoproteins. J Allergy Clin Immunol Jan; 121(1):185–190CrossRefGoogle Scholar
  76. 76.
    Altmann F (2007) The role of protein glycosylation in Allergy. Int Arch Allergy Immunol 142(2):99–115CrossRefPubMedGoogle Scholar
  77. 77.
    Chung CH, Mirakhur B, Chan E, Le QT, Berlin J, Morse M, Murphy BA, Satinover SM, Hosen J, Mauro D, Slebos RJ, Zhou Q, Gold D, Hatley T, Hicklin DJ, Platts-Mills TA (2008) Cetuximab-induced anaphylaxis and IgE specific for galactose-alpha-1,3-galactose. N Engl J Med 358(11):1109–1117CrossRefPubMedGoogle Scholar
  78. 78.
    Cox KM, Sterling JD, Regan JT, Gasdaska JR, Frantz KK, Peele CG, Black A, Passmore D, Moldovan-Loomis C, Srinivasan M, Cuison S, Cardarelli PM, Dickey LF (2006) Glycan optimization of a human monoclonal antibody in the aquatic plant Lemna minor. Nat Biotechnol 24(12):1591–1597CrossRefPubMedGoogle Scholar
  79. 79.
    Lonberg N (2005) Human antibodies from transgenic animals. Nat Biotechnol 23(9):1117–1125CrossRefPubMedGoogle Scholar
  80. 80.
    Potgieter TI, Cukan M, Drummond JE, Houston-Cummings NR, Jiang Y, Li F, Lynaugh H, Mallem M, McKelvey TW, Mitchell T, Nylen A, Rittenhour A, Stadheim TA, Zha D, d’Anjou M (2009) Production of monoclonal antibodies by glycoengineered Pichia pastoris. J Biotechnol 139(4):318–325CrossRefPubMedGoogle Scholar
  81. 81.
    Hossler P, Khattak SF, Li ZJ (2009) Optimal and consistent protein glycosylation in mammalian cell culture. Glycobiology 19(9):936–949CrossRefPubMedGoogle Scholar
  82. 82.
    De Muynck B, Navarre C, Nizet Y, Stadlmann J, Boutry M (2009) Different subcellular localization and glycosylation for a functional antibody expressed in Nicotiana tabacum plants and suspension cells. Transgenic Res 18(3):467–482CrossRefPubMedGoogle Scholar
  83. 83.
    Morrow KJ Jr (2007) Advances in antibody manufacturing using mammalian cells. Biotechnol Annu Rev 13:95–113CrossRefPubMedGoogle Scholar
  84. 84.
    Werner RG, Kopp K, Schlueter M (2007) Glycosylation of therapeutic proteins in different production systems. Acta Paediatr Suppl 96(455):17–22CrossRefPubMedGoogle Scholar
  85. 85.
    Majid FA, Butler M, Al-Rubeai M (2007) Glycosylation of an immunoglobulin produced from a murine hybridoma cell line: the effect of culture mode and the anti-apoptotic gene, bcl-2. Biotechnol Bioeng 97(1):156–169CrossRefPubMedGoogle Scholar
  86. 86.
    Strohl WR (2009) Optimization of Fc-mediated effector functions of monoclonal antibodies. Curr Opin Biotechnol 20(6):685–691CrossRefPubMedGoogle Scholar
  87. 87.
    Jefferis R (2009) Recombinant antibody therapeutics: the impact of glycosylation on mechanisms of action. Trends Pharmacol Sci 30(7):356–362CrossRefPubMedGoogle Scholar
  88. 88.
    Yoo EM, Chintalacharuvu KR, Penichet ML, Morrison SL (2002) Myeloma expression systems. J Immunol Methods 261(1–2):1–20PubMedGoogle Scholar
  89. 89.
    Sazinsky SL, Ott RG, Silver NW, Tidor B, Ravetch JV, Wittrup KD (2008) Aglycosylated immunoglobulin G1 variants productively engage activating Fc receptors. Proc Natl Acad Sci U S A 105(51):20167–20172CrossRefPubMedGoogle Scholar
  90. 90.
    Satoh M, Iida S, Shitara K (2006) Non-fucosylated therapeutic antibodies as next-generation therapeutic antibodies. Expert Opin Biol Ther 6(11):1161–1173CrossRefPubMedGoogle Scholar
  91. 91.
    Macher BA, Galili U (2008) The Galalpha1,3Galbeta1,4GlcNAc-R (alpha-Gal) epitope: a carbohydrate of unique evolution and clinical relevance. Biochim Biophys Acta 1780(2):75–88PubMedGoogle Scholar
  92. 92.
    Du J, Yarema KJ (2010) Carbohydrate engineered cells for regenerative medicine. Adv Drug Deliv Rev. Jan 28. [Epub ahead of print] PubMed PMID: 20117158Google Scholar
  93. 93.
    Solá RJ, Griebenow K (2010) Glycosylation of therapeutic proteins: an effective strategy to optimize efficacy. BioDrugs 24(1):9–21CrossRefPubMedGoogle Scholar
  94. 94.
    Durocher Y, Butler M (2009) Expression systems for therapeutic glycoprotein production. Curr Opin Biotechnol 20(6):700–707CrossRefPubMedGoogle Scholar
  95. 95.
    Jacobs PP, Callewaert N (2009) N-glycosylation engineering of biopharmaceutical expression systems. Curr Mol Med 9(7):774–800CrossRefPubMedGoogle Scholar
  96. 96.
    Du J, Meledeo MA, Wang Z, Khanna HS, Paruchuri VD, Yarema KJ (2009) Metabolic glycoengineering: sialic acid and beyond. Glycobiology 19(12):1382–1401CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • T. Shantha Raju
    • 1
    Email author
  • David M. Knight
    • 1
  • Robert E. Jordan
    • 1
  1. 1.Discovery Technology ResearchBiologics Research, Centocor R&D IncRadnorUSA

Personalised recommendations