Advertisement

Lectin Microarrays: Simple Tools for the Analysis of Complex Glycans

  • Lakshmi Krishnamoorthy
  • Lara K. MahalEmail author
Chapter
  • 774 Downloads

Abstract

The emerging roles for post-translational modifications in the regulation of cellular function have turned the spotlight on glycosylation. Given the prevalence of protein and lipid glycosylation, it has become imperative to create and utilize new tools to study these critical biopolymers. In particular, there has been an emphasis on the development of high-throughput methodologies to study the structural and functional aspects of glycan-protein interactions. The use of carbohydrate binding proteins (i.e. lectins) in a microarray format has greatly enhanced our ability to de-convolute the structural aspects of the glycome. This simple and unique technology provides a rapid method for glycomic analysis, which opens up the field of glycobiology to more systems-based approaches towards function.

Keywords

Lectin Glycan Glycomics Glycosylation Carbohydrate analysis Microarray 

Abbreviations

CHO

Chinese hamster ovary

DC-SIGN

dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin

Fuc

fucose

Gal

galactose

GlcNAc

N-acetylglucosamine

HIV

human immunodeficiency virus

LacNAc

N-acetyllactosamine

NHS

N-hydroxysuccinimidyl

Notes

Acknowledgements

L.K.M would like to acknowledge the Alfred P. Sloan foundation for funding.

References

  1. 1.
    Huet G, Gouyer V, Delacour D, Richet C, Zanetta JP, Delannoy P, Degand P (2003) Involvement of glycosylation in the intracellular trafficking of glycoproteins in polarized epithelial cells. Biochimie 85:323–330CrossRefPubMedGoogle Scholar
  2. 2.
    Helenius A, Aebi M (2001) Intracellular functions of N-linked glycans. Science 291:2364–2369CrossRefPubMedGoogle Scholar
  3. 3.
    Varki A, Cummings RD, Esko JE, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME (2008) Essentials of glycobiology. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  4. 4.
    Ohtsubo K, Marth JD (2006) Glycosylation in cellular mechanisms of health and disease. Cell 126:855–867CrossRefPubMedGoogle Scholar
  5. 5.
    Haltiwanger RS, Lowe JB (2004) Role of glycosylation in development. Annu Rev Biochem 73:491–537CrossRefPubMedGoogle Scholar
  6. 6.
    Sharon N (2006) Carbohydrates as future anti-adhesion drugs for infectious diseases. Biochim Biophys Acta 1760:527–537PubMedGoogle Scholar
  7. 7.
    Mahal LK (2008) Glycomics: towards bioinformatic approaches to understanding glycosylation. Anticancer Agents Med Chem 8:37–51CrossRefPubMedGoogle Scholar
  8. 8.
    Cummings RD (2009) The repertoire of glycan determinants in the human glycome. Mol Biosyst 5:1087–1104CrossRefPubMedGoogle Scholar
  9. 9.
    Rudiger H, Gabius HJ (2001) Plant lectins: occurrence, biochemistry, functions and applications. Glycoconj J 18:589–613CrossRefPubMedGoogle Scholar
  10. 10.
    Gemeiner P, Mislovicova D, Tkac J, Svitel J, Patoprsty V, Hrabarova E, Kogan G, Kozar T (2009) Lectinomics II. A highway to biomedical/clinical diagnostics. Biotechnol Adv 27:1–15CrossRefPubMedGoogle Scholar
  11. 11.
    Sharon N (2007) Lectins: carbohydrate-specific reagents and biological recognition molecules. J Biol Chem 282:2753–2764CrossRefPubMedGoogle Scholar
  12. 12.
    Mislovičová D, Gemeiner P, Kozarova A, Kozar T (2009) Lectinomics I. Relevance of exogenous plant lectins in biomedical diagnostics. Biologia 64:1–19CrossRefGoogle Scholar
  13. 13.
    Wu AM, Lisowska E, Duk M, Yang Z (2008) Lectins as tools in glycoconjugate research. Glycoconj J 26:899–913CrossRefGoogle Scholar
  14. 14.
    Hirabayashi J (2008) Concept, strategy and realization of lectin-based glycan profiling. J Biochem 144:139–147CrossRefPubMedGoogle Scholar
  15. 15.
    Geyer H, Geyer R (2006) Strategies for analysis of glycoprotein glycosylation. Biochim Biophys Acta 1764:1853–1869PubMedGoogle Scholar
  16. 16.
    Angeloni S, Ridet JL, Kusy N, Gao H, Crevoisier F, Guinchard S, Kochhar S, Sigrist H, Sprenger N (2005) Glycoprofiling with micro-arrays of glycoconjugates and lectins. Glycobiology 15:31–41CrossRefPubMedGoogle Scholar
  17. 17.
    Pilobello KT, Krishnamoorthy L, Slawek D, Mahal LK (2005) Development of a lectin microarray for the rapid analysis of protein glycopatterns. Chembiochem 6:985–989CrossRefPubMedGoogle Scholar
  18. 18.
    Pilobello KT, Mahal LK (2007) Lectin microarrays for glycoprotein analysis. Methods Mol Biol 385:193–203CrossRefPubMedGoogle Scholar
  19. 19.
    Kuno A, Uchiyama N, Koseki-Kuno S, Ebe Y, Takashima S, Yamada M, Hirabayashi J (2005) Evanescent-field fluorescence-assisted lectin microarray: a new strategy for glycan profiling. Nat Methods 2:851–856CrossRefPubMedGoogle Scholar
  20. 20.
    Uchiyama N, Kuno A, Tateno H, Kubo Y, Mizuno M, Noguchi M, Hirabayashi J (2008) Optimization of evanescent-field fluorescence-assisted lectin microarray for high-sensitivity detection of monovalent oligosaccharides and glycoproteins. Proteomics 8:3042–3050CrossRefPubMedGoogle Scholar
  21. 21.
    Nagaraj VJ, Eaton S, Thirstrup D, Wiktor P (2008) Piezoelectric printing and probing of Lectin NanoProbeArrays for glycosylation analysis. Biochem Biophys Res Commun 375:526–530CrossRefPubMedGoogle Scholar
  22. 22.
    Rosenfeld R, Bangio H, Gerwig GJ, Rosenberg R, Aloni R, Cohen Y, Amor Y, Plaschkes I, Kamerling JP, Maya RB (2007) A lectin array-based methodology for the analysis of protein glycosylation. J Biochem Biophys Methods 70:415–426CrossRefPubMedGoogle Scholar
  23. 23.
    Zheng T, Peelen D, Smith LM (2005) Lectin arrays for profiling cell surface carbohydrate expression. J Am Chem Soc 127:9982–9983CrossRefPubMedGoogle Scholar
  24. 24.
    Tateno H, Uchiyama N, Kuno A, Togayachi A, Sato T, Narimatsu H, Hirabayashi J (2007) A novel strategy for mammalian cell surface glycome profiling using lectin microarray. Glycobiology 17:1138–1146CrossRefPubMedGoogle Scholar
  25. 25.
    Tao SC, Li Y, Zhou J, Qian J, Schnaar RL, Zhang Y, Goldstein IJ, Zhu H, Schneck JP (2008) Lectin microarrays identify cell-specific and functionally significant cell surface glycan markers. Glycobiology 18:761–769CrossRefPubMedGoogle Scholar
  26. 26.
    Hsu KL, Pilobello KT, Mahal LK (2006) Analyzing the dynamic bacterial glycome with a lectin microarray approach. Nat Chem Biol 2:153–157CrossRefPubMedGoogle Scholar
  27. 27.
    Hsu KL, Mahal LK (2006) A lectin microarray approach for the rapid analysis of bacterial glycans. Nat Protoc 1:543–549CrossRefPubMedGoogle Scholar
  28. 28.
    Takekawa H, Ina C, Sato R, Toma K, Ogawa H (2006) Novel carbohydrate-binding activity of pancreatic trypsins to N-linked glycans of glycoproteins. J Biol Chem 281:8528–8538CrossRefPubMedGoogle Scholar
  29. 29.
    Nimrichter L, Gargir A, Gortler M, Altstock RT, Shtevi A, Weisshaus O, Fire E, Dotan N, Schnaar RL (2004) Intact cell adhesion to glycan microarrays. Glycobiology 14:197–203CrossRefPubMedGoogle Scholar
  30. 30.
    Adams RB, Voelker WH, Gregg EC (1967) Electrical counting and sizing of mammalian cells in suspension: an experimental evaluation. Phys Med Biol 12:79–92CrossRefPubMedGoogle Scholar
  31. 31.
    Pilobello KT, Slawek DE, Mahal LK (2007) A ratiometric lectin microarray approach to analysis of the dynamic mammalian glycome. Proc Natl Acad Sci U S A 104:11534–11539CrossRefPubMedGoogle Scholar
  32. 32.
    Ebe Y, Kuno A, Uchiyama N, Koseki-Kuno S, Yamada M, Sato T, Narimatsu H, Hirabayashi J (2006) Application of lectin microarray to crude samples: differential glycan profiling of lec mutants. J Biochem 139:323–327CrossRefPubMedGoogle Scholar
  33. 33.
    Matsuda A, Kuno A, Ishida H, Kawamoto T, Shoda J and Hirabayashi J (2008) Development of an all-in-one technology for glycan profiling targeting formalin-embedded tissue sections. Biochem Biophys Res Commun 370:259–263CrossRefPubMedGoogle Scholar
  34. 34.
    Hamelinck D, Zhou H, Li L, Verweij C, Dillon D, Feng Z, Costa J, Haab BB (2005) Optimized normalization for antibody microarrays and application to serum-protein profiling. Mol Cell Proteomics 4:773–784CrossRefPubMedGoogle Scholar
  35. 35.
    Chen S, LaRoche T, Hamelinck D, Bergsma D, Brenner D, Simeone D, Brand RE, Haab BB (2007) Multiplexed analysis of glycan variation on native proteins captured by antibody microarrays. Nat Methods 4:437–444CrossRefPubMedGoogle Scholar
  36. 36.
    Kuno A, Kato Y, Matsuda A, Kaneko MK, Ito H, Amano K, Chiba Y, Narimatsu H, Hirabayashi J (2009) Focused differential glycan analysis with the platform antibody-assisted lectin profiling for glycan-related biomarker verification. Mol Cell Proteomics 8:99–108CrossRefPubMedGoogle Scholar
  37. 37.
    Wu L, KewalRamani VN (2006) Dendritic-cell interactions with HIV: infection and viral dissemination. Nat Rev Immunol 6:859–868CrossRefPubMedGoogle Scholar
  38. 38.
    Krishnamoorthy L, Bess JW, Jr., Preston AB, Nagashima K, Mahal LK (2009) HIV-1 and microvesicles from T cells share a common glycome, arguing for a common origin. Nat Chem BiolGoogle Scholar
  39. 39.
    Booth AM, Fang Y, Fallon JK, Yang JM, Hildreth JE, Gould SJ (2006) Exosomes and HIV Gag bud from endosome-like domains of the T cell plasma membrane. J Cell Biol 172:923–935CrossRefPubMedGoogle Scholar
  40. 40.
    Chan R, Uchil PD, Jin J, Shui G, Ott DE, Mothes W, Wenk MR (2008) Retroviruses human immunodeficiency virus and murine leukemia virus are enriched in phosphoinositides. J Virol 82:11228–11238CrossRefPubMedGoogle Scholar
  41. 41.
    Scanlan CN, Offer J, Zitzmann N, Dwek RA (2007) Exploiting the defensive sugars of HIV-1 for drug and vaccine design. Nature 446:1038–1045CrossRefPubMedGoogle Scholar
  42. 42.
    Raman R, Venkataraman M, Ramakrishnan S, Lang W, Raguram S, Sasisekharan R (2006) Advancing glycomics: implementation strategies at the consortium for functional glycomics. Glycobiology 16:82R–90RCrossRefPubMedGoogle Scholar
  43. 43.
    Yabe R, Suzuki R, Kuno A, Fujimoto Z, Jigami Y, Hirabayashi J (2007) Tailoring a novel sialic acid-binding lectin from a ricin-B chain-like galactose-binding protein by natural evolution-mimicry. J Biochem 141:389–399CrossRefPubMedGoogle Scholar
  44. 44.
    Hsu KL, Gildersleeve JC, Mahal LK (2008) A simple strategy for the creation of a recombinant lectin microarray. Mol Biosyst 4:654–662CrossRefPubMedGoogle Scholar
  45. 45.
    Jeong S, Eom T, Kim S, Lee S, Yu J (2001) In vitro selection of the RNA aptamer against the Sialyl Lewis X and its inhibition of the cell adhesion. Biochem Biophys Res Commun 281:237–243CrossRefPubMedGoogle Scholar
  46. 46.
    Li M, Lin N, Huang Z, Du L, Altier C, Fang H, Wang B (2008) Selecting aptamers for a glycoprotein through the incorporation of the boronic acid moiety. J Am Chem Soc 130:12636–12638CrossRefPubMedGoogle Scholar
  47. 47.
    Zou Y, Broughton DL, Bicker KL, Thompson PR, Lavigne JJ (2007) Peptide borono lectins (PBLs): a new tool for glycomics and cancer diagnostics. Chembiochem 8:2048–2051CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of ChemistryNew York UniversityNew YorkUSA

Personalised recommendations