The Application of High Throughput Mass Spectrometry to the Analysis of Glycoproteins

  • Sasha Singh
  • Morten Thaysen Andersen
  • Judith Jebanathirajah SteenEmail author


Mass spectrometry has significantly contributed to the advancement of glycoprotein research. In combination with conventional glycan purification strategies, high throughput studies become practical, yielding a significant amount of detail regarding the glycoproteome. In this chapter, we provide an overview of commonly employed glycoprotein enrichment strategies which exploit the unique chemical features of glycans for their purification, and introduce the basic concepts of mass spectrometric methods as they apply to glycan identification and characterization. Landmark studies in the enrichment workflows and mass spectrometric analysis of glycans are summarized, as well as the major challenges that face glycoproteomic research.


Glycoproteomics Mass spectrometry High throughput Glycopeptides Glycan enrichment techniques 



Biotinylated phosphine capture reagent


Collision induced dissociation


Electron capture dissociation


Electrospray ionization


Electron transfer dissociation


Fast atom bombardment


Fourier transform ion cyclotron




Galectin LEC6




β-1,4 galactosyl transferase








Higher-energy collision dissociation




Hydrophilic interaction chromatography


Infrared multiphoton dissociation


Ion trap


Liquid chromatography


Matrix assisted laser desorption/ionization




Mass spectrometry


Multi-stage mass spectrometry


N-glycolylneuraminic acid


Periodate-acid Shiff coupled affinity chromatography

PNGase F

peptide-N-glycosidase F


Post-translational modification


Quadrupole ion trap


Triple quadrupole


Quadrupole time of flight


Stable isotope labelling with amino acids in cell culture


Serial lectin affinity chromatography


Tagging-via-substrate affinity


Time of flight


  1. 1.
    Roseman S (2001) Reflections on glycobiology. J Biol Chem 276:41527–41542CrossRefPubMedGoogle Scholar
  2. 2.
    Rudd PM, Wormald MR and Dwek RA (2004) Sugar-mediated ligand-receptor interactions in the immune system. Trends Biotechnol 22:524–530CrossRefPubMedGoogle Scholar
  3. 3.
    Apweiler R, Hermjakob H, Sharon N (1999) On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta 1473:4–8PubMedGoogle Scholar
  4. 4.
    Hart GW, Housley MP, Slawson C (2007) Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins. Nature 446:1017–10122CrossRefPubMedGoogle Scholar
  5. 5.
    Hwang HY, Olson SK, Esko JD, Horvitz HR (2003) Caenorhabditis elegans early embryogenesis and vulval morphogenesis require chondroitin biosynthesis. Nature 423:439–443CrossRefPubMedGoogle Scholar
  6. 6.
    Collins BE, Paulson JC (2004) Cell surface biology mediated by low affinity multivalent protein-glycan interactions. Curr Opin Chem Biol 8:617–625CrossRefPubMedGoogle Scholar
  7. 7.
    Lin X (2004) Functions of heparan sulfate proteoglycans in cell signaling during development. Development 131:6009–6021CrossRefPubMedGoogle Scholar
  8. 8.
    Lowe JB, Marth JD (2003) A genetic approach to mammalian glycan function. Ann Rev Biochem 72:643–691CrossRefPubMedGoogle Scholar
  9. 9.
    Dube DH, Bertozzi CR (2005) Glycans in cancer and inflammation – potential for therapeutics and diagnostics. Nat Rev Drug Discov 4:477–488CrossRefPubMedGoogle Scholar
  10. 10.
    Inatani M, Irie F, Plump AS, Tessier-Lavigne M, Yamaguchi Y (2003) Mammalian brain morphogenesis and midline axon guidance require heparan sulfate. Science 302:1044–1046CrossRefPubMedGoogle Scholar
  11. 11.
    Kinjo Y et al (2005) Recognition of bacterial glycosphingolipids by natural killer T cells. Nature 434:520–525CrossRefPubMedGoogle Scholar
  12. 12.
    Casu B, Guerrini M, Torri G (2004) Structural and conformational aspects of the anticoagulant and anti-thrombotic activity of heparin and dermatan sulfate. Curr Pharm Des 10:939–949CrossRefPubMedGoogle Scholar
  13. 13.
    Guo Y et al (2004) Structural basis for distinct ligand-binding and targeting properties of the receptors DC-SIGN and DC-SIGNR. Nat Struct Mol Biol 11:591–598CrossRefPubMedGoogle Scholar
  14. 14.
    Liu D, Shriver Z, Venkataraman G, El Shabrawi Y, Sasisekharan R (2002) Tumor cell surface heparan sulfate as cryptic promoters or inhibitors of tumor growth and metastasis. Proc Natl Acad Sci U S A 99:568–573CrossRefPubMedGoogle Scholar
  15. 15.
    Ludwig JA, Weinstein JN (2005) Biomarkers in cancer staging, prognosis and treatment selection. Nat Rev Cancer 5:845–856CrossRefPubMedGoogle Scholar
  16. 16.
    Anderson NL, Anderson NG (2002) The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 1:845–867CrossRefPubMedGoogle Scholar
  17. 17.
    Jebanathirajah J, Steen H, Roepstorff P (2003) Using optimized collision energies and high resolution, high accuracy fragment ion selection to improve glycopeptide detection by precursor ion scanning. J Am Soc Mass Spectrom 14:777–784CrossRefPubMedGoogle Scholar
  18. 18.
    Jebanathirajah J, Stensballe H, Jensen A, Roepstorff P (2002) Modification specific proteomics: integrated strategy for glyco and phosphospecific proteomics. In Presented at the ASMS 2002, Orlando, FLGoogle Scholar
  19. 19.
    Zhang H, Li XJ, Martin DB, Aebersold R (2003) Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat Biotechnol 21:660–666CrossRefPubMedGoogle Scholar
  20. 20.
    Khidekel N, Arndt S, Lamarre-Vincent N, Lippert A, Poulin-Kerstien KG, Ramakrishnan B, Qasba PK, Hsieh-Wilson LC (2003) A chemoenzymatic approach toward the rapid and sensitive detection of O-GlcNAc posttranslational modifications. J Am Chem Soc 125:16162–16163CrossRefPubMedGoogle Scholar
  21. 21.
    Saxon E, Bertozzi CR (2000) Cell surface engineering by a modified Staudinger reaction. Science 287:2007–2010CrossRefPubMedGoogle Scholar
  22. 22.
    Sprung R, Nandi A, Chen Y, Kim SC, Barma D, Falck JR, Zhao Y (2005) Tagging-via-substrate strategy for probing O-GlcNAc modified proteins. J Proteome Res 4:950–957CrossRefPubMedGoogle Scholar
  23. 23.
    Khidekel N, Ficarro SB, Peters EC, Hsieh-Wilson LC (2004) Exploring the O-GlcNAc proteome: direct identification of O-GlcNAc-modified proteins from the brain. Proc Natl Acad Sci U S A 101:13132–13137CrossRefPubMedGoogle Scholar
  24. 24.
    Khidekel N et al (2007) Probing the dynamics of O-GlcNAc glycosylation in the brain using quantitative proteomics. Nat Chem Biol 3:339–348CrossRefPubMedGoogle Scholar
  25. 25.
    Vocadlo DJ, Hang HC, Kim EJ, Hanover JA, Bertozzi CR (2003) A chemical approach for identifying O-GlcNAc-modified proteins in cells. Proc Natl Acad Sci U S A 100:9116–9121CrossRefPubMedGoogle Scholar
  26. 26.
    Prescher JA, Dube DH, Bertozzi CR (2004) Chemical remodelling of cell surfaces in living animals. Nature 430:873–837CrossRefPubMedGoogle Scholar
  27. 27.
    Kho Y et al (2004) A tagging-via-substrate technology for detection and proteomics of farnesylated proteins. Proc Natl Acad Sci U S A 101:12479–12484CrossRefPubMedGoogle Scholar
  28. 28.
    Zhao Y, Kwon SW, Anselmo A, Kaur K, White MA (2004) Broad spectrum identification of cellular small ubiquitin-related modifier (SUMO) substrate proteins. J Biol Chem 279:20999–21002CrossRefPubMedGoogle Scholar
  29. 29.
    Hagglund P, Bunkenborg J, Elortza F, Jensen ON, Roepstorff P (2004) A new strategy for identification of N-glycosylated proteins and unambiguous assignment of their glycosylation sites using HILIC enrichment and partial deglycosylation. J Proteome Res 3:556–566CrossRefPubMedGoogle Scholar
  30. 30.
    Carr SA, Roberts GD (1986) Carbohydrate mapping by mass spectrometry: a novel method for identifying attachment sites of Asn-linked sugars in glycoproteins. Anal Biochem 157:396–406CrossRefPubMedGoogle Scholar
  31. 31.
    Zhang Y, Wolf-Yadlin A, Ross PL, Pappin DJ, Rush J, Lauffenburger DA, White FM (2005) Time-resolved mass spectrometry of tyrosine phosphorylation sites in the epidermal growth factor receptor signaling network reveals dynamic modules. Mol Cell Proteomics 4:1240–1250CrossRefPubMedGoogle Scholar
  32. 32.
    Pan S, Zhang H, Rush J, Eng J, Zhang N, Patterson D, Comb MJ, Aebersold R (2005) High throughput proteome screening for biomarker detection. Mol Cell Proteomics 4:182–190PubMedGoogle Scholar
  33. 33.
    Wollscheid B, Bausch-Fluck D, Henderson C, O'Brien R, Bibel M, Schiess R, Aebersold R, Watts JD (2009) Mass-spectrometric identification and relative quantification of N-linked cell surface glycoproteins. Nat Biotechnol 27:378–386CrossRefPubMedGoogle Scholar
  34. 34.
    Kobata A, Endo T (1992) Immobilized lectin columns: useful tools for the fractionation and structural analysis of oligosaccharides. J Chromatogr 597:111–122CrossRefPubMedGoogle Scholar
  35. 35.
    Harada H, Kamei M, Tokumoto Y, Yui S, Koyama F, Kochibe N, Endo T, Kobata A (1987) Systematic fractionation of oligosaccharides of human immunoglobulin G by serial affinity chromatography on immobilized lectin columns. Anal Biochem 164:374–381CrossRefPubMedGoogle Scholar
  36. 36.
    Cummings RD, Kornfeld S (1982) Characterization of the structural determinants required for the high affinity interaction of asparagine-linked oligosaccharides with immobilized Phaseolus vulgaris leukoagglutinating and erythroagglutinating lectins. J Biol Chem 257:11230–11234PubMedGoogle Scholar
  37. 37.
    Hirabayashi J (2004) Lectin-based structural glycomics: glycoproteomics and glycan profiling. Glycoconj J 21:35–40CrossRefPubMedGoogle Scholar
  38. 38.
    Kaji H et al (2003) Lectin affinity capture, isotope-coded tagging and mass spectrometry to identify N-linked glycoproteins. Nat Biotechnol 21:667–672CrossRefPubMedGoogle Scholar
  39. 39.
    Kaji H, Yamauchi Y, Takahashi N, Isobe T (2006) Mass spectrometric identification of N-linked glycopeptides using lectin-mediated affinity capture and glycosylation site-specific stable isotope tagging. Nat Protoc 1:3019–3027CrossRefPubMedGoogle Scholar
  40. 40.
    Jung K, Cho W, Regnier FE (2009) Glycoproteomics of plasma based on narrow selectivity lectin affinity chromatography. J Proteome Res 8:643–650CrossRefPubMedGoogle Scholar
  41. 41.
    Kubota K et al (2008) Analysis of glycopeptides using lectin affinity chromatography with MALDI-TOF mass spectrometry. Anal Chem 80:3693–3698CrossRefPubMedGoogle Scholar
  42. 42.
    Gallagher JT, Morris A, Dexter TM (1985) Identification of two binding sites for wheat-germ agglutinin on polylactosamine-type oligosaccharides. Biochem J 231:115–122PubMedGoogle Scholar
  43. 43.
    Jia W et al (2009) A strategy for precise and large scale identification of core fucosylated glycoproteins. Mol Cell Proteomics 8:913–923CrossRefPubMedGoogle Scholar
  44. 44.
    Hirabayashi J, Hayama K, Kaji H, Isobe T, Kasai K (2002) Affinity capturing and gene assignment of soluble glycoproteins produced by the nematode Caenorhabditis elegans. J Biochem 132:103–114PubMedGoogle Scholar
  45. 45.
    Hemstrom P, Irgum K (2006) Hydrophilic interaction chromatography. J Sep Sci 29:1784–1821CrossRefPubMedGoogle Scholar
  46. 46.
    Thaysen-Andersen M, Thogersen IB, Nielsen HJ, Lademann U, Brunner N, Enghild JJ, Hojrup P (2007) Rapid and individual-specific glycoprofiling of the low abundance N-glycosylated protein tissue inhibitor of metalloproteinases-1. Mol Cell Proteomics 6:638–647CrossRefPubMedGoogle Scholar
  47. 47.
    Thaysen-Andersen M et al (2008) Investigating the biomarker potential of glycoproteins using comparative glycoprofiling – application to tissue inhibitor of metalloproteinases-1. Biochim Biophys Acta 1784:455–463PubMedGoogle Scholar
  48. 48.
    Thaysen-Andersen M, Mysling S, Hojrup P (2009) Site-specific glycoprofiling of N-linked glycopeptides using MALDI-TOF MS: strong correlation between signal strength and glycoform quantities. Anal Chem 81:3933–3943CrossRefPubMedGoogle Scholar
  49. 49.
    Zhang J, Wang DI (1998) Quantitative analysis and process monitoring of site-specific glycosylation microheterogeneity in recombinant human interferon-gamma from Chinese hamster ovary cell culture by hydrophilic interaction chromatography. J Chromatogr B Biomed Sci Appl 712:73–82CrossRefPubMedGoogle Scholar
  50. 50.
    Takegawa Y, Deguchi K, Ito H, Keira T, Nakagawa H, Nishimura SI (2006) Simple separation of isomeric sialylated N-glycopeptides by a zwitterionic type of hydrophilic interaction chromatography. J Sep Sci 29:2533–2540CrossRefPubMedGoogle Scholar
  51. 51.
    Takegawa Y, Deguchi K, Keira T, Ito H, Nakagawa H, Nishimura S (2006) Separation of isomeric 2-aminopyridine derivatized N-glycans and N-glycopeptides of human serum immunoglobulin G by using a zwitterionic type of hydrophilic-interaction chromatography. J Chromatogr A 1113:177–181CrossRefPubMedGoogle Scholar
  52. 52.
    Takegawa Y, Ito H, Keira T, Deguchi K, Nakagawa H, Nishimura S (2008) Profiling of N- and O-glycopeptides of erythropoietin by capillary zwitterionic type of hydrophilic interaction chromatography/electrospray ionization mass spectrometry. J Sep Sci 31:1585–1593CrossRefPubMedGoogle Scholar
  53. 53.
    Wuhrer M, Koeleman CA, Hokke CH, Deelder AM (2005) Protein glycosylation analyzed by normal-phase nano-liquid chromatography – mass spectrometry of glycopeptides. Anal Chem 77:886–894CrossRefPubMedGoogle Scholar
  54. 54.
    Wuhrer M, de Boer AR, Deelder AM (2009) Structural glycomics using hydrophilic interaction chromatography (HILIC) with mass spectrometry. Mass Spectrom Rev 28:192–206CrossRefPubMedGoogle Scholar
  55. 55.
    Packer NH, Lawson MA, Jardine DR, Redmond JW (1998) A general approach to desalting oligosaccharides released from glycoproteins. Glycoconj J 15:737–747CrossRefPubMedGoogle Scholar
  56. 56.
    Itoh S, Kawasaki N, Ohta M, Hyuga M, Hyuga S, Hayakawa T (2002) Simultaneous microanalysis of N-linked oligosaccharides in a glycoprotein using microbore graphitized carbon column liquid chromatography-mass spectrometry. J Chromatogr A 968:89–100CrossRefPubMedGoogle Scholar
  57. 57.
    Alley WR Jr, Mechref Y, Novotny MV (2009) Use of activated graphitized carbon chips for liquid chromatography/mass spectrometric and tandem mass spectrometric analysis of tryptic glycopeptides. Rapid Commun Mass Spectrom 23:495–505CrossRefGoogle Scholar
  58. 58.
    Larsen MR, Hojrup P, Roepstorff P (2005) Characterization of gel-separated glycoproteins using two-step proteolytic digestion combined with sequential microcolumns and mass spectrometry. Mol Cell Proteomics 4:107–119PubMedGoogle Scholar
  59. 59.
    Sparbier K, Koch S, Kessler I, Wenzel T, Kostrzewa M (2005) Selective isolation of glycoproteins and glycopeptides for MALDI-TOF MS detection supported by magnetic particles. J Biomol Tech 16:407–413PubMedGoogle Scholar
  60. 60.
    Sparbier K, Wenzel T, Kostrzewa M (2006) Exploring the binding profiles of ConA, boronic acid and WGA by MALDI-TOF/TOF MS and magnetic particles. J Chromatogr B Analyt Technol Biomed Life Sci 840:29–36CrossRefPubMedGoogle Scholar
  61. 61.
    Zhang L, Xu Y, Yao H, Xie L, Yao J, Lu H, Yang P (2009) Boronic acid functionalized core-satellite composite nanoparticles for advanced enrichment of glycopeptides and glycoproteins. Chemistry 15:10158–10166CrossRefPubMedGoogle Scholar
  62. 62.
    Larsen MR, Jensen SS, Jakobsen LA, Heegaard NHH (2007) Exploring the sialiome using titanium dioxide chromatography and mass spectrometry. Mol Cell Proteomics 6:1778–1787CrossRefPubMedGoogle Scholar
  63. 63.
    Lewandrowski U, Zahedi RP, Moebius J, Walter U, Sickmann A (2007) Enhanced N-glycosylation site analysis of sialoglycopeptides by strong cation exchange prefractionation applied to platelet plasma membranes. Mol Cell Proteomics 6:1933–1941CrossRefPubMedGoogle Scholar
  64. 64.
    Alvarez-Manilla G, Atwood J, 3rd, Guo Y, Warren NL, Orlando R, Pierce M (2006) Tools for glycoproteomic analysis: size exclusion chromatography facilitates identification of tryptic glycopeptides with N-linked glycosylation sites. J Proteome Res 5:701–708CrossRefPubMedGoogle Scholar
  65. 65.
    Morris HR (1980) Biomolecular structure determination by mass spectrometry. Nature 286:447–452CrossRefPubMedGoogle Scholar
  66. 66.
    Barber M, Bordoli RS, Sedgwick RD, Tyler AN, Bycroft BW (1981) Fast atom bombardment mass spectrometry of bleomycin A2 and B2 and their metal complexes. Biochem Biophys Res Commun 101:632–638CrossRefPubMedGoogle Scholar
  67. 67.
    Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246:64–71CrossRefPubMedGoogle Scholar
  68. 68.
    Lane CS (2005) Mass spectrometry-based proteomics in the life sciences. Cell Mol Life Sci 62:848–869CrossRefPubMedGoogle Scholar
  69. 69.
    Papac DI, Wong A, Jones AJ (1996) Analysis of acidic oligosaccharides and glycopeptides by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Chem 68:3215–3223CrossRefPubMedGoogle Scholar
  70. 70.
    Hoffmann Ed., Stroobant V (2007) Mass spectrometry principles and applications. John Wiley & Sons Ltd, New YorkGoogle Scholar
  71. 71.
    Schaeffer-Reiss C (2008) A brief summary of the different types of mass spectrometers used in proteomics. Methods Mol Biol 484:3–16CrossRefPubMedGoogle Scholar
  72. 72.
    Roepstorff P, Fohlman J (1984) Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed Mass Spectrom 11:601CrossRefPubMedGoogle Scholar
  73. 73.
    Medzihradszky KF, Gillece-Castro BL, Settineri CA, Townsend RR, Masiarz FR, Burlingame AL (1990) Structure determination of O-linked glycopeptides by tandem mass spectrometry. Biomed Environ Mass Spectrom 19:777–781CrossRefPubMedGoogle Scholar
  74. 74.
    Hirayama K, Yuji R, Yamada N, Kato K, Arata Y, Shimada I (1998) Complete and rapid peptide and glycopeptide mapping of mouse monoclonal antibody by LC/MS/MS using ion trap mass spectrometry. Anal Chem 70:2718–2725CrossRefPubMedGoogle Scholar
  75. 75.
    Bateman KP, White RL, Thibault P (1998) Evaluation of adsorption preconcentration/capillary zone electrophoresis/nanoelectrospray mass spectrometry for peptide and glycoprotein analyses. J Mass Spectrom 33:1109–1123CrossRefPubMedGoogle Scholar
  76. 76.
    Hui JP, White TC, Thibault P (2002) Identification of glycan structure and glycosylation sites in cellobiohydrolase II and endoglucanases I and II from Trichoderma reesei. Glycobiology 12:837–849CrossRefPubMedGoogle Scholar
  77. 77.
    Zeng R, Xu Q, Shao XX, Wang KY, Xia QC (1999) Characterization and analysis of a novel glycoprotein from snake venom using liquid chromatography-electrospray mass spectrometry and Edman degradation. Eur J Biochem 266:352–328CrossRefPubMedGoogle Scholar
  78. 78.
    Zhu X, Borchers C, Bienstock RJ, Tomer KB (2000) Mass spectrometric characterization of the glycosylation pattern of HIV-gp120 expressed in CHO cells. Biochemistry 39:11194–11204CrossRefPubMedGoogle Scholar
  79. 79.
    Macek B, Hofsteenge J, Peter-Katalinic J (2001) Direct determination of glycosylation sites in O-fucosylated glycopeptides using nano-electrospray quadrupole time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 15:771–777CrossRefPubMedGoogle Scholar
  80. 80.
    McLafferty FW, Horn DM, Breuker K, Ge Y, Lewis MA, Cerda B, Zubarev RA, Carpenter BK (2001) Electron capture dissociation of gaseous multiply charged ions by Fourier-transform ion cyclotron resonance. J Am Soc Mass Spectrom 12:245–249CrossRefPubMedGoogle Scholar
  81. 81.
    Zubarev RA, Horn DM, Fridriksson EK, Kelleher NL, Kruger NA, Lewis MA, Carpenter BK, McLafferty FW (2000) Electron capture dissociation for structural characterization of multiply charged protein cations. Anal Chem 72:563–573CrossRefPubMedGoogle Scholar
  82. 82.
    Hakansson K, Cooper HJ, Emmett MR, Costello CE, Marshall AG, Nilsson CL (2001) Electron capture dissociation and infrared multiphoton dissociation MS/MS of an N-glycosylated tryptic peptic to yield complementary sequence information. Anal Chem 73:4530–4536CrossRefPubMedGoogle Scholar
  83. 83.
    Mirgorodskaya E, Roepstorff P, Zubarev RA (1999) Localization of O-glycosylation sites in peptides by electron capture dissociation in a Fourier transform mass spectrometer. Anal Chem 71:4431–4436CrossRefPubMedGoogle Scholar
  84. 84.
    Hakansson K, Emmett MR, Hendrickson CL, Marshall AG (2001) High-sensitivity electron capture dissociation tandem FTICR mass spectrometry of microelectrosprayed peptides. Anal Chem 73:3605–3610CrossRefPubMedGoogle Scholar
  85. 85.
    Hogan JM, Pitteri SJ, Chrisman PA, McLuckey SA (2005) Complementary structural information from a tryptic N-linked glycopeptide via electron transfer ion/ion reactions and collision-induced dissociation. J Proteome Res 4:628–632CrossRefPubMedGoogle Scholar
  86. 86.
    Wuhrer M, Catalina MI, Deelder AM, Hokke CH (2007) Glycoproteomics based on tandem mass spectrometry of glycopeptides. J Chromatogr B Analyt Technol Biomed Life Sci 849:115–128CrossRefPubMedGoogle Scholar
  87. 87.
    Catalina MI, Koeleman CA, Deelder AM, Wuhrer M (2007) Electron transfer dissociation of N-glycopeptides: loss of the entire N-glycosylated asparagine side chain. Rapid Commun Mass Spectrom 21:1053–1061CrossRefPubMedGoogle Scholar
  88. 88.
    Wiesner J, Premsler T, Sickmann A (2008) Application of electron transfer dissociation (ETD) for the analysis of posttranslational modifications. Proteomics 8:4466–4483CrossRefPubMedGoogle Scholar
  89. 89.
    Good DM, Wirtala M, McAlister GC, Coon JJ (2007) Performance characteristics of electron transfer dissociation mass spectrometry. Mol Cell Proteomics 6:1942–1951CrossRefPubMedGoogle Scholar
  90. 90.
    Picariello G, Ferranti P, Mamone G, Roepstorff P, Addeo F (2008) Identification of N-linked glycoproteins in human milk by hydrophilic interaction liquid chromatography and mass spectrometry. Proteomics 8:3833–3847CrossRefPubMedGoogle Scholar
  91. 91.
    Gonzalez J, Takao T, Hori H, Besada V, Rodriguez R, Padron G, Shimonishi Y (1992) A method for determination of N-glycosylation sites in glycoproteins by collision-induced dissociation analysis in fast atom bombardment mass spectrometry: identification of the positions of carbohydrate-linked asparagine in recombinant alpha-amylase by treatment with peptide-N-glycosidase F in 18O-labeled water. Anal Biochem 205:151–158CrossRefPubMedGoogle Scholar
  92. 92.
    Hagglund P, Matthiesen R, Elortza F, Hojrup P, Roepstorff P, Jensen ON, Bunkenborg J (2007) An enzymatic deglycosylation scheme enabling identification of core fucosylated N-glycans and O-glycosylation site mapping of human plasma proteins. J Proteome Res 6:3021–3031CrossRefPubMedGoogle Scholar
  93. 93.
    Carr SA, Huddleston MJ, Bean MF (1993) Selective identification and differentiation of N- and O-linked oligosaccharides in glycoproteins by liquid chromatography-mass spectrometry. Protein Sci 2:183–196CrossRefPubMedGoogle Scholar
  94. 94.
    Huddleston MJ, Bean MF, Carr SA (1993) Collisional fragmentation of glycopeptides by electrospray ionization LC/MS and LC/MS/MS: methods for selective detection of glycopeptides in protein digests. Anal Chem 65:877–884CrossRefPubMedGoogle Scholar
  95. 95.
    Annan RS, Carr SA (1997) The essential role of mass spectrometry in characterizing protein structure: mapping posttranslational modifications. J Protein Chem 16:391–402CrossRefPubMedGoogle Scholar
  96. 96.
    Sullivan B, Addona TA, Carr SA (2004) Selective detection of glycopeptides on ion trap mass spectrometers. Anal Chem 76:3112–3118CrossRefPubMedGoogle Scholar
  97. 97.
    Adamson JT, Hakansson K (2006) Infrared multiphoton dissociation and electron capture dissociation of high-mannose type glycopeptides. J Proteome Res 5:493–501CrossRefPubMedGoogle Scholar
  98. 98.
    Jiang H, Desaire H, Butnev VY, Bousfield GR (2004) Glycoprotein profiling by electrospray mass spectrometry. J Am Soc Mass Spectrom 15:750–758CrossRefPubMedGoogle Scholar
  99. 99.
    Gadgil HS, Bondarenko PV, Treuheit MJ, Ren D (2007) Screening and sequencing of glycated proteins by neutral loss scan LC/MS/MS method. Anal Chem 79:5991–5999CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Sasha Singh
    • 1
    • 2
    • 3
  • Morten Thaysen Andersen
    • 4
  • Judith Jebanathirajah Steen
    • 5
    • 1
    • 3
    • 6
    Email author
  1. 1.Proteomics Center at Children’s Hospital BostonBostonUSA
  2. 2.Departments of PathologyHarvard Medical School and Children’s Hospital BostonBostonUSA
  3. 3.F. M. Kirby Neurobiology Center, Children’s Hospital BostonBostonUSA
  4. 4.Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdense MDenmark
  5. 5.F.M. Kirby Center for Neurobiology, Proteomics Center at Children’s Hospital BostonBostonUSA
  6. 6.Department of NeurobiologyHarvard Medical SchoolBostonUSA

Personalised recommendations