• Jordi Colomer-FarraronsEmail author
  • Pere Lluís Miribel-Català


This chapter introduces the state-of-the-art in the main topics covered in the book: energy harvesting, with special interest in the body energy harvesting sources, biosensors, and finally the electronics for them. These are the main aspects to consider in the envisaged conception of the Self-Powered architecture for subcutaneous detector device.


Low-power instrumentation Miniaturized biomedical system Wireless implanted devices Self-Powered devices Event detector implantable devices 


  1. 1.
    C. Sauer, N. Thakor, Power harvesting and telemetry in CMOS for implanted devices. IEEE Trans. on Circuits and Syst. 52(12), 2605–2613 (Dec 2005)CrossRefGoogle Scholar
  2. 2.
    Y. Li, J. Liu, A 13.56 MHz RFID Transponder front-end with merged load modulation and voltage doubler-clamping rectifier circuits. IEEE Int. Sym. on Circuits and Syst. 5095–5098 (2005)Google Scholar
  3. 3.
    K. Myny, et al, An inductively coupled 64b organic RFID tag Operating at 13,56 MHz with a data rate of 787b/s. IEEE Int. Solid-State Circuits Conf. 290–614 (2008)Google Scholar
  4. 4.
    A. Gore, et al., A multi-channel femtoampere-sensitivity conductometric array for biosensing applications. 28th IEEE Eng. in Medicine and Biology Science Conference, pp. 6489–6492, 2006Google Scholar
  5. 5.
    M. R. Haider, et al., A low-power processing unit for in vivo monitoring and transmission of sensor signals. Sensors & Transducers J. 84(10) 1625–1632 (Oct 2007)Google Scholar
  6. 6.
    J. Colomer-Farrarons; P. Miribel-Català; J. Samitier; M. Arundell; I. Rodríguez, Design of a miniaturized electrochemical instrument for in-situ O2 monitoring. (Proceedings Paper Spie’09), VLSI Circuits and Systems IV, Microtechnologies for the New Millennium, Volumen 7363 (2009)Google Scholar
  7. 7.
  8. 8.
  9. 9.
    Transdermal Drug Delivery Promises To Eliminate Needles.
  10. 10.
    C.M. Zierhofer, E.S. Hachmair, Geometric approach for coupling enhancement of magnetically coupled coils. IEEE Trans. Biomed. Eng. 43, 708–714 (1996)CrossRefGoogle Scholar
  11. 11.
    M. Sawan, H. Yamu, J. Coulombe, Wireless smart implants dedicated to multichannel monitoring and microstimulation. IEEE Circuits Syst. Mag. 5, 21–39 (2005)CrossRefGoogle Scholar
  12. 12.
    C. Sauer, M. Stanacevic, G. Cauwenberhs, N. Thakor, Power harvesting and telemetry in CMOS for implanted devices. IEEE Trans. Circuits Syst. 52(12), 2605–2613 (Dec 2005)CrossRefGoogle Scholar
  13. 13.
    Y. Li, J. Liu, A 13.56 MHz RFID transponder front-end with merged load modulation and voltage doubler-clamping rectifier circuits. IEEE International Symposium on Circuits and Systems, 5095–5098 2005Google Scholar
  14. 14.
    K. Myny, S. Van Winckel, S. Steudel, P. Vicca, S. De Jonge, M.J. Beenhakkers, C.W Sele, N.A.J.M. van Aerle, G.H.Gelink, J. Genoe, P. Heremans, An inductibely-coupled 64b organic RFID tag Operating at 13,56 MHz with a data rate of 787b/s. IEEE International Solid-State Circuits Conference, pp. 290–614 (2008).Google Scholar
  15. 15.
    O. Meirik, Implantable contraceptives for women. Contraception. 65(1), 1–2 (2002)CrossRefGoogle Scholar
  16. 16.
    O. Meirik et al, Implantable contraceptives for women. Hum Reprod Update. 9(1), 49–59 (2003)CrossRefGoogle Scholar
  17. 17.
    S. Alepuz, S. Busquets-Monge, J. Bordonau, J. Gago, D. Gonzalez, J. Balcells, Interfacing renewable energy sources to the utility grid using a three-level inverter. IEEE Trans. Ind. Electron. 53(5), 1504–1511 (Oct 2006)CrossRefGoogle Scholar
  18. 18.
    J.M. Carrasco, L.G. Franquelo, J.T. Bialasiewicz, E. Galvan, R.C. PortilloGuisado, M.A.M. Prats, J.I. Leon, N. Moreno-Alfonso, Power-Electronic systems for the grid integration of renewable energy sources: A survey. IEEE Trans. Ind. Electron. 53(4), 1002–1016 (June 2006)CrossRefGoogle Scholar
  19. 19.
    J. Schonberger, R. Duke, S.D. Round, DC-bus signaling: A distributed control strategy for a hybrid renewable nanogrid. IEEE Trans. Ind. Electron. 53(5), 1453–1460 (Oct. 2006)CrossRefGoogle Scholar
  20. 20.
    L. Collins, Harvest for the world. IEEE Power Eng. 20(1), 34–37 (Feb–March 2006)CrossRefGoogle Scholar
  21. 21.
    J.A. Paradiso, T. Starner, Energy scavenging for mobile and wireless electronics, IEEE Pervasive Comput. 4(1), 18–27 (Jan–March 2005)CrossRefGoogle Scholar
  22. 22.
    E.M. Yeatman, Energy scavenging for wireless sensor nodes, in Proceedings. of the 2nd International Workshop on Advances in Sensors and Interface, 1–4 (2007)Google Scholar
  23. 23.
    S. Roundy, D. Steingart, L. Frechette, P. Wright, J. Rabaey, Power sources for wireless sensors networks, in Proceedings. of the 1st European Workshop on Wireless Sensors Networks, 1–17 (Jan.2004)Google Scholar
  24. 24.
    D. Niyato, E. Hossain, M.M. Rashid, V.K. Bhargava, Wireless sensor networks with energy harvesting technologies: A game-theoretic approach to optimal energy management. IEEE Wirel. Commun. 14(4), 90–96 (Aug 2007)CrossRefGoogle Scholar
  25. 25.
    N.S. Shenck, J.A. Paradiso, Energy scavenging with shoe-mounted piezoelectrics. IEEE Micro. 21(3), 30–42 (May–June 2001)CrossRefGoogle Scholar
  26. 26.
    T. Starner, J.A. Paradiso, Human-generated power for mobile electronics, ed. by C. Piguet. Low-Power Electronics Design, (CRC Press, 2004), Chapter 45, pp. 1–35Google Scholar
  27. 27.
    M.S.M. Soliman, E.F. El-Saadany, R.R. Manssur, Electromagnetic MEMS Based Micro-Power Generator, in Proceedings of the IEEE International Symposium on Industrial Electronics, Vol.4 (Jul 2006), pp. 2747–2753Google Scholar
  28. 28.
    X. Cao, W. Chiang, Y. King, Y. Lee, Energy harvesting circuit with feedforward and feedback DC–DC PWM boost converter for vibration power generator system. IEEE Trans. Power Electron. 22(2) 679–685, (March, 2007)CrossRefGoogle Scholar
  29. 29.
    S. Meninger, J.O. Mur-Miranda, R. Amirtharajah, A. Chandrakasan, J.H. Lang, Vibration-to-electric energy conversion. IEEE Trans. Very Large Scale Integration (VLSI) Systems. 9(1), 64–76 (Feb.2001)CrossRefGoogle Scholar
  30. 30.
    N. Ben Amor, O. Kanoun, Investigation to the Use of Vibration Energy for Supply of Hearing Aids, in Proceedings of the IEEE Instrumentation and Measurement Technology Conference, (May 2007), pp. 1–6Google Scholar
  31. 31.
    Y. Ammar, A. Buhrig, M. Marzencky, B. Charlot, S. Basour, K. Matou, M. Renaudin,Wireless sensor network node with asynchronous architecture and vibration harvesting micro power generator, in Proceedings of the SOC-EUSAI Conference, (Oct 2005), pp. 287–292Google Scholar
  32. 32.
    E.K. Reilly, E. Carleton, P.K. Wright, Thin film piezoelectric energy scavenging systems for long term medical monitoring, in Proceedings of the IEEE International Workshop on Wearable and Implantable Body Sensor Networks, (2006), p. 4Google Scholar
  33. 33.
    D. Puccinelli, M. Haenggi, Wireless sensor networks: Applications and challenges of ubiquitous sensing. IEEE Circuits Syst. Mag. 3(3), 19–29 (2005)CrossRefGoogle Scholar
  34. 34.
    F. Kocer, P.M. Walsh, and M.P. Flynn, Wireless, Remotely Powered Telemetry in 0.25 μm CMOS, Radio Frequency Integrated Circuits Symposium, (IEEE Press, FortWorth, Texas, 2004), 339–342Google Scholar
  35. 35.
    N. Cho et al., A 8-μW, 0.3 mm2 RF-Powered Transponder with Temperature Sensor for Wireless Environmental Monitoring, in Proceedings IEEE International Symposium on Circuits and Systems, (May 2005), pp. 4763–4766Google Scholar
  36. 36.
    S.J. Miller-Smith, New Chip Can Read Your Pet’s Temperature, Darwin Veterinary Center.
  37. 37.
    M. Ferrari, V. Ferrari, D. Marioli, A. Taroni, Modeling, fabrication and performance measurements of a piezoelectric energy converter for power harvesting in autonomous microsystems. IEEE Trans. Instrum. Meas. 55(6) 2096–2101 (Dec 2006)CrossRefGoogle Scholar
  38. 38.
    C.B. Williams, R.B. Yates, Analysis of a micro-electric generator for microsystems. Sens. Actuators A. 52, 8–11 (1996)CrossRefGoogle Scholar
  39. 39.
    M. El-hami, P. Glynne-Jones, N.M. White, M. Hill, S. Beeby, E. James, A.D. Brown, and J.N. Ross, Design and fabrication of a new vibration-based electromechanical power generator, Sens. Actuators A. 92 335–342 (2001)CrossRefGoogle Scholar
  40. 40.
    T. Starner, Human-powered wearable computing. IBM Syst. J. 35 618–629 (1996)CrossRefGoogle Scholar
  41. 41.
  42. 42.
    J. Brufau, M. Puig, Piezoelectric energy harvesting improvement with complex conjugate impedance matching. J. Intell. Mater. Syst.Struct. 2009 pp. 597–608, (Sept 2008), DOI: 10.1177/1045389X08096051Google Scholar
  43. 43.
    M. Griot, Fundamentals of Vibration Isolation,
  44. 44.
    J.A. Paradiso, Systems for human-powered mobile computing, Proceedings of the 43rd annual Design Automation Conference Annual ACM IEEE Design Automation Conference, San Francisco, CA, SESSION: Session 37: Special session: beyond low-power design: environmental energy harvesting, 645–650 (2006)Google Scholar
  45. 45.
    S. Roundy, P.K. Wright, and K.S.J. Pister, Micro-electrostatic vibration-to-electricity converters proceedings of IMECE’02 2002 ASME international mechanical engineering congress & exposition New Orleans, Louisiana 17–22 (2002)Google Scholar
  46. 46.
    J.A. Paradiso, T. Starner, Energy scavenging for mobile and wireless electronics. IEEE Pervasive Comput. 4, 18–27 (2005)CrossRefGoogle Scholar
  47. 47.
  48. 48.
  49. 49.
    J. Krikke, Sunrise for energy harvesting products, published by the IEEE CS and IEEE ComSoc 1536-1268/05/$20.00 © 2005 IEEEGoogle Scholar
  50. 50.
    M. Stordeur, I. Stark, Low Power Thermoelectric Generator – Self-Sufficient Energy Supply for Micro Systems, in Proceedings ICT’97 16th International Conferrence Thermoelectrics, (1997), pp.575–577Google Scholar
  51. 51.
  52. 52.
  53. 53.
    S. Roundy, P.K. Wright, J.M. Rabaey, Energy Scavenging for Wireless Sensor Networks (Kluwer Academic Publishers, Boston MA)Google Scholar
  54. 54.
  55. 55.
    “Wireless Power Demonstrated”, Retrieved 12-09-2008
  56. 56.
    Wireless electricity could power consumer, industrial electronics. MIT News. 2006-11-14.
  57. 57.
    Thermo Life Energy Co.
  58. 58.
    T. Kazazian, A.J. Jansen, Eco-desing and human-powered products, proceedings of the Electronics Goes Green, (2004), pp. 6–10Google Scholar
  59. 59.
    FreePlay, To make energy available to everybody all of the time,
  60. 60.
    N.S. Shenck, J. Paradiso, Energy scavenging with shoe-mounted piezoelectrics. IEEE Micro. 21(3), (May–June 2001) 30–42CrossRefGoogle Scholar
  61. 61.
    WHMS – Wearable Health Monitoring Systems, Electrical and Computer Engineering, The University of Alabama in Huntsville,
  62. 62.
  63. 63.
    C. Van Hoof, V Leonov, R.J.M Vullers, Thermoelectric and Hybrid Generators in Wearable Devices and Clothes, 6th International Workshop on Wearable and Implantable Body Sensor Networks, 2009. BSN 2009. 3–5 June 2009 195–200Google Scholar
  64. 64.
  65. 65.
  66. 66.
  67. 67.
    Health Care News. “Microsoft Partners With Implantable RFID Chip Maker VeriChip”
  68. 68.
  69. 69.
    IUPAC Compendium of Chemical Terminology, International Union of Pure and Applied Chemistry: Research Triangle Park, NC, USA 2nd edn. (1997, 1992)Google Scholar
  70. 70.
    L.C. Clark Jr, C. Lyons, Electrode systems for continuous monitoring in cardiorascular surgery NY, Acad. Sci. 102, 29–45 (1962)ADSCrossRefGoogle Scholar
  71. 71.
    K. Dill, Biosens. Bioelectron. 20, 736–742 (2004)CrossRefGoogle Scholar
  72. 72.
    M. Hiller, C. Kranz, J. Huber, P. Bauerle, W. Schuhmann, Amperometric biosensors produced by immobilization of redox enzymes at polythiophene-modified electrode surfaces. Adv. Mater. 8, 219–222 (1996)CrossRefGoogle Scholar
  73. 73.
    A. Kros, W.F.M. Van Hovell, N.A.J.M. Sommerdijk, R.J.M. Nolte, Poly(3, 4-thylenedioxythiophene)-based glucose biosensors. Adv. Mater. 13,1555–1557 (2001)CrossRefGoogle Scholar
  74. 74.
    P.A. Fiorito, S.I.C. De Torresi, Glucose amperometric biosensor based on the co-immobilization of glucose oxidase (Gox) and ferrocene in poly(pyrrole) generated from ethanol/water mixtures. J. Braz. Chem. Soc. 12, 729–733 (2001)CrossRefGoogle Scholar
  75. 75.
    J. Patel, B. Kaminska, B. Gray, B. Gates,Electro-Enzymatic Glucose Sensor Using Hybrid Polymer Fabrication Process Electronics, Circuits and Systems, 2007. ICECS 2007. in Proceedings of the 14th IEEE International Conference on 11–14 Dec. (2007) pp. 403–406Google Scholar
  76. 76.
    X. Huang, S. Li, J. Schultz, Q. Wang, Q. Lin, A capacitively based MEMS affinity glucose sensor”, Proceedings of the International Solid-State Sensors, Actuators and Microsystems Conference, TRANSDUCERS 2009, (21–25 June 2009), pp. 1457–1460Google Scholar
  77. 77.
    N.P, Rodrigues, H. Kimura, Y Sakai, T. Fujii, Cell-based Microfluidic biochip for electrochemical real-time monitoring of glucose and oxygen Solid-State Sensors, Actuators and Microsystems Conference. (10–14 June 2007) pp. 843–846Google Scholar
  78. 78.
    A. Rahman, G. Justin, A. Guiseppi-Wilson, A. Guiseppi-Elie, Fabrication and packaging of a dual sensing electrochemical biotransducer for glucose and lactate useful in intramuscular physiologic status monitoring Sens. J. IEEE 9 (12),(Dec 2009) 1856–1863Google Scholar
  79. 79.
    J. Xie; S. Wang; L. Aryasomayajula, V.K. Varadan, Material and electrochemical studies of platinum nanoparticle-coated carbon nanotubes for biosensing. Nanotechnology, 2007. IEEE-NANO 2007. 7th IEEE Conference, 2–5 Aug 2007, pp. 1077–1080Google Scholar
  80. 80.
    E.M.I. Ekanayake, D. Preethichandra, K. Kaneto, Fabrication and characterization of nano-structured conducting polymer electrodes for glucose biosensor applications. Industrial and information systems, 2007. ICIIS 2007. International conference, 9–11 Aug 2007, pp. 63–66Google Scholar
  81. 81.
    U. Ali, S.M. Nur, M. Willander, B. Danielsson, Glucose detection with a commercial MOSFET using a ZnO nanowires extended gate. IEEE Trans. Nanotechnol. 8(6), 678–683 (Nov 2009)ADSCrossRefGoogle Scholar
  82. 82.
    Bender, Sadik, Direct electrochemical immunosensor for polychlorinated biphenyls. Environ. Sci. Technol. 32, 788–797 (1998)CrossRefGoogle Scholar
  83. 83.
    G. Farace, G. Lillie, T. Hianik, P. Payne and P. Vadgama, Reagentless biosensing using electrochemical impedance spectroscopy. Bioelectrochemistry 55,1–3 (2002)CrossRefGoogle Scholar
  84. 84.
    E. Katz, I. Willner, Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: routes to impedimetric immunosensors, DNA-sensors, and enzyme biosensors. Electroanalysis 15, 913–947 (2003)CrossRefGoogle Scholar
  85. 85.
    D. Laureyn, P. Nelis, K. Van Gerwen, L. Baert, R. Hermans, J.J. Magnee, G. Maes, Nanoscaled interdigitated titanium electrodes for impedimetric biosensing. Sens. Actuators B-Chem. 68, 360–370 (2000)CrossRefGoogle Scholar
  86. 86.
    Lillie, P. Payne, P. Vadgama, Electrochemical impedance spectroscopy as a platform for reagentless bioaffinity sensing. Sens. Actuators B-Chem. 78, 249–256 (2001)CrossRefGoogle Scholar
  87. 87.
    Y. Liu, S. Chakrabartty, E.C Alocilja, Fundamental building blocks for molecular biowire based forward error-correcting biosensors. Nanotechnology 18 424-017 (6pp). (2007)Google Scholar
  88. 88.
    J. Colomer-Farrarons, P. Miribel-Català, A. Saiz-Vela, J. Samitier, in Proceedings. of the 16th IEEE International Conference on Very Large Scale Integration VLSI – SOC, A 50 μW low-voltage CMOS Biopotentiostat for low frequency Capacitive Biosensor. (Rodhas, Greece, 2008)Google Scholar
  89. 89.
    A. Gore, S. Chakrabartty, S. Pal, E. Alocilja, A multi-channel femtoampere-sensitivity conductometric array for biosensing applications, Proceedings of the Annaual InternationalConference on IEEE Engineeringin Medicine and Biological Society. 2006Google Scholar
  90. 90.
    S.V. Dzyadevych et al. Electrochemical enzyme biosensors (2006), ISBN: 966-02-4200-XGoogle Scholar
  91. 91.
    E.A. Johannessen, L. Wang, L. Cui, T. Tang, A. Astaras, M. Ahmadian, J.M. Cooper, Implementation of multichannel sensors for remote biomedical measurements in a microsystems format. IEEE Trans. Biomed. Eng. (2004)Google Scholar
  92. 92.
    P. Mohseni, K. Najafi, S.J. Eliades, W. Xiaoqin, Wireless multichannel biopotential recording using an integrated FM telemetry circuit. Neural Syst. Rehabil. Eng., IEEE Trans. 13(3), 263–271 (Sept 2005)Google Scholar
  93. 93.
    K. Murari, C.M. Sauer, M. Stanacevic, G. Cauwenberghs, N. Thakor, Wireless Multichannel Integrated Potentiostat for Distributed Neurotransmitter Sensing Engineering in Medicine and Biology 27th Annual Conference Shanghai, China, Sept 1–4 2005Google Scholar
  94. 94.
    R. Thewes, F. Hofmann, A. Frey, B. Holzapfl, M. Schienle, C. Paulus, P. Schindler, G. Eckstein, C. Kassel, M. Stanzel, R. Hintsche, E. Nebling, J. Albers, J. Hassman, J. Schülein, W. Goemann, W. Gumbrecht, Sensor arrays for fully-electronic DNA detection on CMOS IEEE international solid-state circuits conference, Section 21.2, 2002Google Scholar
  95. 95.
    E. Ghafar-Zadeh, M. Sawan, D. Therriault, CMOS based capacitive sensor laboratory-on-chip: a multidisciplinary approach. Analog Integrated Circuits and Signal Processing. 59(1), 1–12 (April 2009)CrossRefGoogle Scholar
  96. 96.
    C. G. Zoski, Handbook of Electrochemistery, Elseiber, 2007, ISBN: 0-444-51958-0Google Scholar
  97. 97.
    C. Myung-suk, L. Sang-won, K. Jong-chul, C. Jun-dong, K. Jin-kwon; S. Hang-sik; L. Myung-ho; C. Un-sun; K. Jae-seok. Implantable Bio system design for displacement measurement of living life. Proc. 9th Int. Conf. Advanced Communication Technol. 1, 12–14 299–304 (Feb 2007)Google Scholar
  98. 98.
    K. Kitamori, Micro and nano chemical system on chip. TRANSDUCERS 2007. International Solid-State Sensors, Actuators and Microsystems Conference, 2007. 10–14 June 2007 11–16Google Scholar
  99. 99.
    W. Chung, A.C. Paglinawan, Y. Wang, T. Kuo, A 600μW Readout circuit with potentiostat for amperometric chemical sensors and glucose meter applications. IEEE conference on electron devices and solid-state circuits, 2007. EDSSC 2007. 20–22 Dec 2007 pp. 1087–1090Google Scholar
  100. 100.
    A. Lasia. Electrochemical impedance spectroscopy and its applications, Modern Aspects of Electrochemistry. Vol. 32 (Kluwer Academic/Plenum Publishers, New York, 1999), Chapter.2, p. 143Google Scholar
  101. 101.
    R.J. Reay, S.P. Kounaves, G. Kovacs, An integrated CMOS potentiostat for miniaturized electroanalytical instrumentation, Digest of Technical Papers of the 1994 IEEE International 41st ISSCC Solid-State Circuits Conference, 16–18 Feb 1994 162–163Google Scholar
  102. 102.
    T.D. Strong, S.M. Martin, R.F. Franklin, R.B. Brown, Integrated electrochemical neurosensors, Proceedings of the IEEE International Symposium on Circuits and Systems, 2006. ISCAS 2006. (21–24 May 2006) p. 4 pp. 4110–4113Google Scholar
  103. 103.
    Martin, S.M., Gebara, F.H., Larivee, B.J., Brown, R.B. A CMOS-integrated microinstrument for trace detection of heavy metals. IEEE J. Solid-State Circuits. 40(12), 2777–2786 (Dec 2005)CrossRefGoogle Scholar
  104. 104.
    European Commission, Groundwater at risk: Managing the water under us, DG Environment, (2008)Google Scholar
  105. 105.
    I.M. Petayev, Plasma oxygen during cardioplumonary bypass: a comparison of blood levels woth oxygen present in plasma lipid. Clin. Sci. 94(1), 35–41 (1998)Google Scholar
  106. 106.
    S.M. Park, J.S. Yoo. Electrochemical impedance spectroscopy for better electrochemical measurements. Anal. Chem. 75(21), 455A–461A (2003)Google Scholar
  107. 107.
    A.D’. Amico et al., Low-voltage low-power integrated analog lock-in amplifier for gas sensor applications. Sens. Actuators B: Chem. (2009), doi:10.1016/j.snb.2009.01.046Google Scholar
  108. 108.
    M. Min, T. Parve, Improvement of lock-in electrical bio-impedance analyzer for implantable medical devices. IEEE Trans. Instrum. Meas. 56(3), 968–974 (June 2007)CrossRefGoogle Scholar
  109. 109.
    H.A. Wolpert, Use of continous glucose monitoring in the detection and prevention of hypoglycemia, J. Diabetes Sci. Technol. 1(1), 146–150 (Jan 2007)Google Scholar
  110. 110.
  111. 111.
  112. 112.
    L.A. Cantarero, J.E. Butler, J.W. Osborne, The adsorptive characteristics of proteins for polystyrene and their significance in solid-phase immunoassays Anal. Biochem. 105, 375–382 (1980)Google Scholar
  113. 113.
    M.M. Teymoori, H. Asadollahi, MEMS Based Medical Microsensors Computer and Electrical Engineering, 2009. ICCEE ’09. 2nd International Conference on Vol. 1 (28–30 Dec 2009) pp. 158–162Google Scholar
  114. 114.
    Y.J. Lee, J.D. Kim, J.Y. Park, Flexible enzyme free glucose micro-sensor for continuous monitoring applications. Solid-State Sensors, Actuators and Microsystems Conference, 2009. TRANSDUCERS 2009. International 21–25 June 2009 pp. 1806–1809Google Scholar
  115. 115.
    J.D. Goud, P.M. Raj, Jin Liu, R. Narayan, M. Iyer, R. Tummala, Electrochemical Biosensors and Microfluidics in Organic System-on-Package Technology Electronic Components and Technology Conference, 2007. ECTC ’07. Proceedings 57th. May 29–June 1 2007 pp. 1550–1555Google Scholar
  116. 116.
    E. Carnes, E. Wilkins, The development of a new, rapid, amperometric immunosensor for the detection of low concentrations of bacteria part I: Design and detection system and applications. Am. J. Appl. Sci. 2 and 3, 597–606 (2005)Google Scholar
  117. 117.
    H. Lhermet. et al., Efficient Power Management Circuit: Thermal Energy Harvesting to Above-IC Microbattery Energy Storage, ISSCC Digest of Technical Papers, pp. 62–63, Feb 2007Google Scholar
  118. 118.
    H. Shao et al., An inductor-less micro solar power management system design for energy harvesting applications. IEEE international symposium on circuits and systems, May 2007, pp. 1353–1356Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Jordi Colomer-Farrarons
    • 1
    Email author
  • Pere Lluís Miribel-Català
    • 1
  1. 1.Electronics DepartmentUniversity of BarcelonaBarcelonaSpain

Personalised recommendations