Advertisement

Energy Harvesting (Multi Harvesting Power Chip)

  • Jordi Colomer-FarraronsEmail author
  • Pere Lluís Miribel-Català
Chapter

Abstract

There is a growing interest in renewable energy and their applications for both, high and low power systems. Specifically, Energy Harvesting consists in the use of free available energy from the environment, vibrations, heat, light, radio waves or human activities, to power small electronic systems with Low-Voltages and Low-Power consumption. The challenge is to avoid the use of any bulky battery with finite amount of energy and just work directly with the harvested energy and a rechargeable storage element. At that point, Energy Harvesting generators are a promising alternative to generate energy from environment sources and power some applications. Moreover, the use of these generators, with infinite amount of energy, allows the development of autonomous Self-Powered applications. This chapter discusses the development of a real power system based on the recollected energy from several ambient sources. A system able to collect and manage energy from four different power sources, solar light, vibrations, thermal and inductive waves is introduced. Furthermore, the conception is validated with a full-custom Integrated Circuit (IC). Later on, a comprehensive description of all circuits involved in the Multi harvesting system is done; emphasizing the design for Low-Voltage and Low-Power applications.

Keywords

Electric power generation Energy scavenging Low-power electronics Power conditioning 

References

  1. 1.
    S.J. Miller-Smith, New Chip Can Read Your Pet’s Temperature, Darwin Veterinary Center. http://www.darwinvets.plus.com/topical/biothermo.htm
  2. 2.
    E.O. Torres, G.A. Rincón-Mora, Electrostatic energy-harvesting and battery-charging CMOS system prototype. IEEE J. Circuits Syst.–I, 56(9), (Sept 2009)Google Scholar
  3. 3.
    S. Alepuz, S. Busquets-Monge, J. Bordonau, J. Gago, D. Gonzalez, J. Balcells, Interfacing renewable energy sources to the utility grid using a three-level inverter. IEEE Trans. Ind. Electron. 53(5), 1504–1511 (Oct 2006)CrossRefGoogle Scholar
  4. 4.
    J.M. Carrasco, L.G. Franquelo, J.T. Bialasiewicz, E. Galvan, R.C. PortilloGuisado, M.A.M. Prats, J.I. Leon, N. Moreno-Alfonso, Power-electronic systems for the grid integration of renewable energy sources: A survey. IEEE Trans. Ind. Electron. 53(4), 1002–1016 (June 2006)CrossRefGoogle Scholar
  5. 5.
    J. Schonberger, R. Duke, S.D. Round, DC-bus signaling: A distributed control strategy for a hybrid renewable nanogrid. IEEE Trans. Ind. Electron. 53(5), 1453–1460 (Oct 2006)CrossRefGoogle Scholar
  6. 6.
    L. Collins, Harvest for the world. IEE Power Eng. 20(1), 34–37 (Feb–March 2006)CrossRefGoogle Scholar
  7. 7.
    J.A. Paradiso, T. Starner, Energy scavenging for mobile and wireless electronics. IEEE Pervasive Comput. 4(1), 18–27 (Jan–March 2005)CrossRefGoogle Scholar
  8. 8.
    E.M. Yeatman. in. Energy scavenging for wireless sensor nodes. Proceedings of the 2nd International Workshop on Advances in Sensors and Interface, 2007. IWASI 2007, (2007) p. 4Google Scholar
  9. 9.
    S. Roundy, D. Steingart, L. Frechette, P. Wright, J. Rabaey, Power sources for wireless sensors networks. 1st European Workshop on Wireless Sensors Networks, (Berlin, Germany, 2004)Google Scholar
  10. 10.
    D. Niyato, E. Hossain, M.M. Rashid, V.K. Bhargava, Wireless sensor networks with energy harvesting technologies: A game-theoretic approach to optimal energy management. IEEE Wirel. Commun. 14(4), 90–96 (Aug 2007)CrossRefGoogle Scholar
  11. 11.
    T. Starner, J.A. Paradiso, in Human-Generated Power for Mobile Electronics, ed. by C. Piguet. Low-Power Electronics Design, (CRC Press, Boca Raton, 2004), Chapter 45, pp. 1–35Google Scholar
  12. 12.
    E.K. Reilly, E. Carleton, P.K. Wright, Thin film piezoelectric energy scavenging systems for long term medical monitoring, IEEE Proceedings of the International Workshop on Wearable and Implantable Body Sensor Networks, (2006), p. 4Google Scholar
  13. 13.
    X. Cao, W. Chiang, Y. King, Y. Lee, IC energy harvesting circuit with feedforward and feedback DC–DC PWM boost converter for vibration power generator system. IEEE Trans. Power Electron. 22(2), 679–685 (March 2007)CrossRefGoogle Scholar
  14. 14.
  15. 15.
  16. 16.
    J. Brufau, M. Puig, Piezoelectric polymer model validation applied to mm size micro-robot I-SWARM (intelligent swarm), Proceedings of the SPIE 2006. 6166, pp. 229–240Google Scholar
  17. 17.
    L. Mateu, F. Moll, System –level simulation of a self-powered sensor with piezoelectric energy harvesting. Sensor technologies and applications, International conference on sensorComm, (2007) pp. 399–404Google Scholar
  18. 18.
    D. Puccinelli, M. Haenggi, Wireless sensor networks: applications and challenges of ubiquitous sensing. IEEE Circuits Syst. Mag., 3(3), 19–29 (2005)CrossRefGoogle Scholar
  19. 19.
    M. Ferrari, V. Ferrari, D. Marioli, A. Taroni, Modeling, fabrication and performance measurements of a piezoelectric energy converter for power harvesting in autonomous microsystems, IEEE Trans. Instrum. Meas. 55(6), pp. 2096–2101, (Dec 2006)CrossRefGoogle Scholar
  20. 20.
  21. 21.
    K. Van Schuylengergh, R. Puers, Inductive Powering. Basic Theory and Application to Biomedical Systems, (Springer, 2009), ISBN: 978-90-481-2411-4Google Scholar
  22. 22.
    B. Lenaerts, R. Puers, Omnidirectional Inductive Powering for Biomedical Implants, (Springer, 2009), ISBN: 978- 1- 4020-9074-5Google Scholar
  23. 23.
    M.Veefkind, Industrial design and PV-power, challenges and barriers, Proceedings of the ISES EuroSun Congres, (2004)Google Scholar
  24. 24.
    A. Reinders, Options for photovoltaic solar energy systems in portable products, Proceedings of the 4th TCME, (2002)Google Scholar
  25. 25.
    A. Bertacchini, D. Dondi, L. Larcher, P. Pavan, Perfomance analysis of solar energy harvesting circuits for autonomous sensors, Proceedings of the 34th Annual Conference of IEEE Industrial Electronics, 2008 (IECON), (2008) ISBN: 978-1-4244-1767-4Google Scholar
  26. 26.
    S.K. Lau, K.N. Leung, P. Mok, Analysis of Low-Dropout Regulator Topologies for Low-Voltage Regulation, IEEE Conference on Electron Devices and Solid-State Circuits, pp. 379 – 382, 2003.LDO1Google Scholar
  27. 27.
    B.M. King, Advantages of using PMOS-type low-dropout linear regulator in battery applications. Analog Appl. J., Texas Instruments, Inc. (2000) Available at: focus.ti.com/lit/an/slyt161/slyt161.pdfGoogle Scholar
  28. 28.
    J.A. Cueto, T.J. McMahon, Performance of single-junction a-Si modules under varying conditions in the field, 26th IEEE Photovoltaic specialists conference, (1997)Google Scholar
  29. 29.
    M. Green, Photovoltaic: Technology overview. Energy Policy. 28, 989–998 (2000)CrossRefGoogle Scholar
  30. 30.
    C. Sauer, M. Stanacevic, G. Cauwenberghs, N. Thakor, Power harvesting and telemetry in CMOS for implant devices. IEEE Trans. Circuits Syst. 52, 12 (Dec 2005)Google Scholar
  31. 31.
    N. Utsuyama, H. Yamaguchi, S. Obara, H. Tanaka, S. Fukutaand, J. Nakahira, S. Tanabe, E. Bando, H. Miyamoto, Telemetry of human electrocardiograms in aerial and aquatic environments, IEEE Trans. Biomed. Eng. 35, 881–884 (1988)CrossRefGoogle Scholar
  32. 32.
    J. Van Ham, P. Reynders, R. Puers, An autonomous implantable distraction nail controlled by an inductive power and data link, Transducers 2007 and Eurosensors XXI, (Lyon, France, 2007). pp. 427–430.Google Scholar
  33. 33.
    Zarlink Semiconductors Inc, ZL70101Medical Implantable RF Transceiver, (2007)Google Scholar
  34. 34.
    U.S. Inan, A.S. Inan, Electromagnetic Waves: Electromagnetic Radiation and Elementary Antennas, (Prentice Hall, 2000), pp. 476–499, ISBN 0-201-36179-5Google Scholar
  35. 35.
    L.W. Hart, H.W. Ko, J.H. Meyer, D.P. Vasholz, R.I. Joseph, A noninvasively electromagnetic conductivity sensor for biomedical applications. IEEE Trans. Biomed. Eng. 35, 1011–1022 (1988)CrossRefGoogle Scholar
  36. 36.
    E.S. Hochmair, System optimization for improved accuracy in transcutaneous signal and power transmission. IEEE Trans. Biomed. Eng. 31, 177–186, (1984)CrossRefGoogle Scholar
  37. 37.
    F.S. Barnes, Interaction of DC and ELF electric fields with biological materials and systems, Handbook of Biological Effects of Electromagnetic Fields, (CRC Press, 1996), 2nd edn., chapter. 2, pp. 103–148, ISBN: 0-8493-0641-8Google Scholar
  38. 38.
    Microchip Application Note, Antenna Circuit Design for RFID Applications AN710, (2003)Google Scholar
  39. 39.
    ST Microelectronics Application Note, Antenna (and Associated Components) Matching – Circuit Calculation for the CRX14 Coupler, AN1806, (Feb 2006)Google Scholar
  40. 40.
    S. Serkan, K. Lim, J. Laskar, M. Tentzeris, Design and modelling of embedded 13.56 M Hz RFID antennas., IEEE – Antennas and Propagation Society International Symposium, 4B, 64 – 67 (July 2005), ISBN: 0-7803-8883-6Google Scholar
  41. 41.
    Texas Instruments datasheet, Stability analysis of Low-dropout linear regulators with PMOS pass element, SLYT194, 1999Google Scholar
  42. 42.
    R. Tantawy, E.J. Brauer. Performance Evaluation of CMOS Low Drop-Out Voltage Regulators, Proceedings of the 47th IEEE International Midwest Symposium on Circuits and Systems, (2004)Google Scholar
  43. 43.
    K. Nang Leung et al. A Low-voltage CMOS low-dropout regulator with enhanced loop response, Proceedings of IEEE ISCAS 2004 pp. 385–388Google Scholar
  44. 44.
    R. Jacob Baker, CMOS: Circuit Design, Layout, and Simulation. Revised second edition, (Wiley – Interscience, 2008), ISBN 978–0-470-22941-5Google Scholar
  45. 45.
    R. Tantawy, E.J. Brauer, Performances Evaluation of CMOS Low Brop-Out Voltage Regulators, Proceedings of the 47th IEEE International Midwest Symposium on Circuits and Systems (MWSCAS), (2004)Google Scholar
  46. 46.
    Giustolisi, et al. A low-voltage low-power voltage reference based on subthreshold MOSFET's. IEEE J. Solid-State Circuits. 38(1), 151–154 (2003)Google Scholar
  47. 47.
    M.D. Ker, J.S. Chen. New Curvature-Compensation Technique for CMOS Bandgap Reference with Sub-1-V Operation. IEEE Trans. Circuits and Syst. II. 53(8), 667–671 (Aug 2006)CrossRefGoogle Scholar
  48. 48.
    K. Sanborn, M. Dongsheng, V. Ivanov, A sub-1-V low-noise bandgap voltage reference. IEEE J Solid-State Circuits. 42(11), 2466–2481 (Nov 2007)CrossRefGoogle Scholar
  49. 49.
    D.V. Kerns, Optimization of the peaking current source. IEEE J. Solid-State Circuits. 21(2), 587–590 (1986)MathSciNetCrossRefGoogle Scholar
  50. 50.
    D.V. Kerns, Enhanced peaking current reference. IEEE J. Solid-State Circuits. 23(3), 869–872 (1988)CrossRefGoogle Scholar
  51. 51.
    S. Chunlei, B.C. Walker, E. Zeisel, B. Hu, G.H. McAllister. A Highly Integrated Power Management IC for Advanced Mobile Applications. IEEE Trans. Solid-State Circuits. 42(8), 1723–1731 (Aug.2007)CrossRefGoogle Scholar
  52. 52.
    M.H. Cheng, Z.W. Wu. Low-power low-voltage reference using peaking current mirror circuit. Electron. Lett. 41(10) (May 2005)Google Scholar
  53. 53.
    M.H. Rashid, Power Electronics Handbook, (Academic Press), ISBN 0120884798Google Scholar
  54. 54.
    M.H. Rashid, Power Electronics: Circuits, Devices and Applications 3rd edn., (Academic Press), ISBN-10: 0125816502Google Scholar
  55. 55.
    F. Kocer, P.M. Walsh, M.P. Flynn, Wireless, remotely powered telemetry in 0.25 μm CMOS, radio frequency integrated circuits symposium, (IEEE Press, 2004), pp. 339–342Google Scholar
  56. 56.
    J. Brufau, Smart materials for microrobotics. Motion Control and Power Harvesting, (Universitat de Barcelona, Barcelona, 2009)Google Scholar
  57. 57.
    J. Colomer-Farrarons, P. Miribel-Català, A. Saiz-Vela, M. Puig-Vidal, J. Samitier, Power-conditioning circuitry for s self-powered system based on micro pzt generators in a 0.13 μ m low-voltage low-power technology. IEEE Trans. Ind. Electron. 55(9), (Sept 2008), ISSN 0278-0054Google Scholar
  58. 58.
    L. Mateu, Energy Harvesting from Human Passive Power, (Universitat Politecnica de Catalunya, Catalonia, 2009)Google Scholar
  59. 59.
    J. Brufau, M. Puig, Piezoelectric energy harvesting improvement with complex conjugate impedance matching. J. Intell. Mater. Syst. Struct. 2009, 597–608 (Sep 2008), DOI: 10.1177/1045389X08096051CrossRefGoogle Scholar
  60. 60.
    G. Patounakis, Y.W. Li, K.L. Shepard, A fully integrated on-chip DC-DC conversion and power management system. IEEE J. Solid-State Circuits. 39, 3 (Jan 2004)CrossRefGoogle Scholar
  61. 61.
    A.M. Abo, P.R. Gray, A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter. IEEE J. Solid-State Circuits. 34(5), (May 1999)Google Scholar
  62. 62.
    D. Aksin et al., A bootstrapped switch for precise sampling of inputs with signal range beyond supply voltage, IEEE Custom Integrated Circuits Conference, pp. 743–746 (2005)Google Scholar
  63. 63.
    ST Microelectronics: http://www.st.com
  64. 64.
    Europractice service: http://www.europractice.com/
  65. 65.
    CMP service: http://cmp.imag.fr/
  66. 66.
    R. Gregorian, Introduction to CMOS Op-Amps and Comparators (Wiley & Sons, USA, 1999), ISBN 0-471-31778-0Google Scholar
  67. 67.
    R.J. Milliken, A Capacitor – Less Low Drop – Out Voltage Regulator with Fast Transient Response (Texas A&M University, PhD Thesis, December 2005) Available at: http://repository.tamu.edu/handle/1969.1/3275
  68. 68.
    P. Corbishley, E. Rodriguez – Villegas, A low power low voltage rectifier circuit. IEEE Int. Midwest Symp.Circuits Syst. MWSCAS’06”. 2, 512–515 (2006), ISBN: 1-4244-0172-0Google Scholar
  69. 69.
    A.J. Cardoso, C.R. Rodrigues, R.S. Pippi, A.Cesar, F.C.B. Vieira, CMOS Energy Harvester Based on a Low-Cost Piezoelectric Acoustic Transducer, Proceedings of the 49th IEEE International Midwest Symposium on Circuits and Systems, 2006. MWSCAS '06. Vol 1, (6–9 Aug. 2006) pp. 70–74Google Scholar
  70. 70.
    R. Fiorelli, A. Arnaud, C. Galup-Motoro, Series-Parallel Association of Transisotrs for the Reduction of Random Offset in Non-Unity Gain Current Mirrors, Proceedings of the International Conference on Circuits and Systems ISCAS’04, Vol. 1 (May 2004), ISBN: 0-7803-8251-XGoogle Scholar
  71. 71.
    M. Ferrari, V. Ferrari, M. Giuzzetti, D. Marioli, An autonomous battery-less sensor module powered by piezoelectric energy harvesting with RF transmission of multiple measurement signals, Smart Materials and StructuresGoogle Scholar
  72. 72.
    T. Lehman, Y. Moghe, On–Chip active power rectifiers for biomedical applications. IEEE Int. Symp. Circuits Syst. 2005 ISCAS’05. 1, 732–735 (2005), ISBN: 0-7803-8834-8CrossRefGoogle Scholar
  73. 73.
    M. Huang et. al., Sub-1 V Input Single-Inductor Dual-Output (SIDO) DC-DC Converter with Adaptive Load-Tracking Control (ALTC) for Single-Cell-Powered System, Proceedings of the European Solid-State Circuit Conference (ESSCIRC’09), (2009) pp. 268–271Google Scholar
  74. 74.
    P.B. Zbar, Prácticas de electrónica, Marcombo S. A., (1988), ISBN 84-267-0233-6Google Scholar
  75. 75.
    K. Bhattacharyya, P.V. Ratna Kumar, P. Mandal, Embedded Hybrid DC-DC Converter with Improved Power Efficiency, Proceedingsof the 52nd International Midwest Symposium on Circuits and Systems, (2009) pp. 945–948Google Scholar
  76. 76.
    A. Saiz-Vela, P. Miribel-Català, J. Colomer-Farrarons, J. Samitier, Ripple reduction on skipping-based regulated two-phase voltage doubler charge pump. Electron. Lett. 45, 20 (Sept 2009)CrossRefGoogle Scholar
  77. 77.
    R. Pelliconi, D. Iezzi, A. Baroni, M. Pasotti, P. Rolandi, Power efficient charge pump in deep submicron standard CMOS technology. IEEE J. Solid-State Circuits. 38(6), 1068–1071 (June 2003)CrossRefGoogle Scholar
  78. 78.
    J. Soldera, A. V. Boas, A. Olmos, A Low Ripple Fully Integrated Charge Pump Regulator, Proceedings of the 16th Symposium on Integrated Circuits and System design, (2003) pp. 170–180Google Scholar
  79. 79.
    A. Saiz-Vela, P. Miribel-Català, J. Colomer-Farrarons, M. Puig-Vidal, J. Samitier, Accurate design of high multistage voltage doublers based on compact mathematical model. Electron. Lett. 43, 15 (July 2007)CrossRefGoogle Scholar
  80. 80.
    J.A. Starzyk, J. Yin-Wei, Q. Fengjing, A DC-DC Charge pump design based on voltage doublers. IEEE Trans. Circuits Syst.I Fundam. Theory Appl. 48(3), 350–358 (March 2001)CrossRefGoogle Scholar
  81. 81.
    C. Chan; W.H. Ki; C.Tsui; Bi-directional integrated charge pumps, IEEE International Symposium on Circuits and Systems, (2002), 827–830, ISBN: 0-7803-7448-7Google Scholar
  82. 82.
    E. Bayer, H. Schemeller, Charge Pump with Active Cycle Regulation-Closing the Gap Between Linear and Skip Modes, Proceedings of the IEEE International Power Electronics Specialists Conference, (PESC), (June 2000), pp. 1497–1502Google Scholar
  83. 83.
    J. Doutreloigne, H. de Smet, J. Van den Steen, G. Van Doorsealer, Low-Power High-Voltage CMOS Level-Shifters for Liquid Crystal Display Drivers, Proceedings of the 11th International Conference on Microelectronics, (1999), pp. 13–216Google Scholar
  84. 84.
    A. Saiz-Vela, P. miribel-Català, J. Colomer-Farrarons, M. Puig-Vidal, J. Samitier, AccuRate Design of Two-Phase Voltage Doublers Based on a Compact Mathematical Model, Proceedings of the 50th Midwest Symposium on Circuits and Systems (MWSCAS’07), (2007), pp. 213–216Google Scholar
  85. 85.
    I. Doms, P. Merken, C. Van Hoof, R. P. Mertens, Capacitive power management circuit for micropower thermoelectric generators with a 1.4 μA controller. IEEE J. Solid State Circuits. 44, 10 (Oct 2009)CrossRefGoogle Scholar
  86. 86.
    F. Kocer, P.M. Walsh, M. P. Flynn, Wireless Remotely Power Telemetry in 0.25 μm CMOS, 2004 VLSI Symposium, (June 2004) pp. 24–27Google Scholar
  87. 87.
    T.S. Salter Jr., G. Metze, N. Goldsman, Improved RF Power Harvesting Circuit Design, International Semiconductor Device Research Symposium, (2007)Google Scholar
  88. 88.
    W. Leran, T.J. Kazmierski, B.M. Al-Hashimi, S. P. Beeby, R. N. Torah, Integrated approach to energy harvester mixed technology modeling and performance optimization, Design, Automation and Test in Europe (DATE’08), (2008)Google Scholar
  89. 89.
  90. 90.
  91. 91.
  92. 92.
    W. C. Yen, H. W. Chen, Low power and fast system wakeup circuit. IEE Proceedings on Circuits, Devices and Systems, 152, 223–228 (2005)CrossRefGoogle Scholar
  93. 93.
    J. Colomer-Farrarons et. al., Self-Powered Temperature Sensor Powered by Vibration Energy Harvesting, Proceedings of the 32nd Conference on Design of Circuits and Integrated Systems, 2007, ISBN-13 978-84690-8629-2Google Scholar
  94. 94.
    E. Lefeuvre et al., Piezoelectric energy harvesting device optimization by synchronous electric charge extraction. J. Intell. Mater. Syst. Struct. 16, 865–876 (2005)Google Scholar
  95. 95.
    N.S. Shenck and J.A. Paradiso, Energy scavenging with shoe-mounted piezoelectrics. IEEE Micro. 21(3), 30–42 (2001)CrossRefGoogle Scholar
  96. 96.
    M.S.M. Soliman, E.F. El-Saadany, R.R. Manssur. Electromagnetic MEMS based micro-power enerator. 2006 IEEE International Symposium on Industrial Electronics. 4, 2747–2753 (July 2006)CrossRefGoogle Scholar
  97. 97.
    S. Meninger, J.O. Mur-Miranda, R. Amirtharajah, A. Chandrakasan, J.H. Lang Vibration-to-electric energy conversion. IEEE Trans. Very Large Scale Integration (VLSI) Syst. 9(1), 64–76 (2001)CrossRefGoogle Scholar
  98. 98.
    N. Amor, O. Kanoun, Investigation to the Use of Vibration Energy for Supply of Hearing Aids, Proceedings of the 2007 IEEE Instrumentation and Measurement Technology Conference,(1–3 May 2007), pp. 1–6Google Scholar
  99. 99.
    N. Cho et al., A 8-μW, 0.3 mm2 RF-Powered Transponder with Temperature Sensor for Wireless Environmental Monitoring, Proceedings of the Int’l Symposium Circuits and Systems (ISCAS 2005), (IEEE Press, 2005), pp. 4763–4766Google Scholar
  100. 100.
    N. Hayakawa, A study of the new energy system for quartz watches (II)-The effective circuit for the system, in Proceedings of the Congrès Eur. Chronomét., (1988), pp. 81–85Google Scholar
  101. 101.
    J. Yoshida, Piezoelectric rackets add professional oomph, in Electronic Engineering Times. (Manhasset, NY: CMP), (Jun 10, 2002)Google Scholar
  102. 102.
    C.B. Williams, R.B. Yates, Analysis of a micro-electric generator for microsystems. Sens. Actuators A 52, 8–11 (1996)CrossRefGoogle Scholar
  103. 103.
    M. El-hami, P. Glynne-Jones, N.M. White, M. Hill, S. Beeby, E. James, A.D. Brown, J.N. Ross, Design and fabrication of a new vibration-based electromechanical power generator. Sens. Actuators A 92, 335–342 (2001)CrossRefGoogle Scholar
  104. 104.
    T. Starner, Human-powered wearable computing. IBM Syst. J. 35, 618–629, (1996)CrossRefGoogle Scholar
  105. 105.
    J. Colomer-Farrarons, J. Brufau, P. Miribel-Catala, A. Saiz-Vela, M. Puig-Vidal, J. Samitier Power Conditioning Circuitry for a Self-Powered Mobile System Based on an Array of Micro PZT Generators in a 0.13 μm Technology, Proceedings of the IEEE International Symposium on Industrial Electronics, 2007. ISIE 2007. (4–7 June 2007) pp. 2353–2357Google Scholar
  106. 106.
    M. Ghovanloo, K. Najafi, Fully integrated power supply design for wireless biomedical implants, 2nd Annual International IEEE – EMB Conference on Microtechnologies in Medicine & Biology, (IEEE Press, 2002), pp. 414–419, ISBN 0-7803-7480-0Google Scholar
  107. 107.
    Q.T. Hoang, B.F. Hete, R.P. Gaumond, Comments on radio-frequency coil in implantable devices: misalignment analysis and design procedure. IEEE Trans. Biomed. Eng. 35, 1011–1022 (1988)CrossRefGoogle Scholar
  108. 108.
    Texas Instruments datasheet, A low-voltage CMOS low-dropout Regulator, LP2985, (June 2001)Google Scholar
  109. 109.
    E. Dalago, D. Miatton, G. Venchi, V. Bottarel, G. Frattini, G. Ricotti, M. Schipani, Electronic Interface for Piezoelectric energy Scavenging System, Proceedings of the 34th European Solid – State Conference ESSCIRC 2008, pp. 402 – 405, ISBN: 978-1-4244-2361-3Google Scholar
  110. 110.
    Y. Ammar et al., Wireless sensor network node with asynchronous architecture and vibration harvesting micro power generator, Proceedings of the 2005 joint conference on Smart objects and ambient intelligence, pp. 287–292, ISBN: 1-59593-304-2Google Scholar
  111. 111.
    T.S. Salter Jr., G. Metze, N. Goldsman, Improved RF power harvesting circuit design. ISDRS’07 Conf. (Dec 2007)Google Scholar
  112. 112.
    L. Wang, et al., Integrated approach to energy harvester mixed technology modelling and performance optimisation, University of Southampton, ISBN: 978-3-9810801-3-1Google Scholar
  113. 113.
    A. Facen, A. Boni, Power Supply Generation in CMOS Passive UHF RFID Tags, Research in Microelectronics and Electronics (2006), pp. 33–36, ISBN: 1-4244-0157-7Google Scholar
  114. 114.
    C. Sauer, M. Stanacevic, G. Cauwenberghs, N. Thakor, Power Harvesting and telemetry in CMOS for implanted devices. IEEE Trans. Circuits and Systems-I. 52(12), (Dec 2005)Google Scholar
  115. 115.
    P. Vaillancourt, A. Djemouai, J.F. Harvey, M. Sawan, EM radiation behaviour upon biological tissues in a radio-frequency power transfer link for a cortical visual implant. Proc. IEEE EMBS Conf. 6, 2499–2502 (1997)Google Scholar
  116. 116.
    K. Myny et al. An inductively – coupled 64b organic RFID tag operating at 13.56 M Hz with a data rate of 787b/s, IEEE International Solid State Circuits Conference, pp. 290–291 (2008)Google Scholar
  117. 117.
    M. Barú, O. de Oliveira, F. Silveira, A 2 V Rail – to – Rail Micropower CMOS Comparator, Proceedings of the 11th Conference of the Brazilian Microelectronics Society, (Sep 1996)Google Scholar
  118. 118.
    Maxim-IC Application Note, Adding Extra Hysteresis to Comparators, AP 3616, (Aug 2005)Google Scholar
  119. 119.
    C. Huang, J. Wang, High-Performances and power–efficient CMOS comparators. IEEE J. Solid – State Circuits. 38 2 (Feb. 2003)Google Scholar
  120. 120.
    T. Umeda et al., A 950-MHz rectifier circuit for sensor network tags with 10-m distance. IEEE J. Solid-State Circuits. 41, 1 (Jan. 2006)CrossRefGoogle Scholar
  121. 121.
    T.T. Le, J. Han, A. von Jouanne, K. Mayaram, T.S. Fiez, Piezoelectric micro-power generation interface circuits. IEEE J. Solid-State Circuits. 41, 6 (June 2006)CrossRefGoogle Scholar
  122. 122.
    E.O. Torres, G.A. Rincon-Mora, Energy-harvesting system-in-package (SiP) microsystem. ASCE J. Energy Eng. 134(4), 121–129 (Dec 2008)CrossRefGoogle Scholar
  123. 123.
    M. Marzencki, Y. Ammar, S. Basrour, Integrated power harvesting system including a MEMS generator and a power management circuit. Sens. Actuators A Phys. 145–146, 363–370 (2008)Google Scholar
  124. 124.
    T. S. Salter Jr., G. Metze, N. Goldsman, Improved RF Power Harvesting Circuit Design ISDRS 2007, (College Park, MD, 2007)Google Scholar
  125. 125.
    L. Wang, T. Kazmierski, B. Al-Hashimi, S. Beeby, R. Torah, Integrated approach to energy harvester mixed technology modelling and performance optimization, Design, Automation and Test in Europe (DATE’o8), (2008)Google Scholar
  126. 126.
    R.P. Areny, Sensores y Acondicionadores de Señal, 3a edición, Marcombo S. A., (1998), ISBN 84-267-1171-5Google Scholar
  127. 127.
    D.W. Hart, Electrónica de Potencia (Prentice Hall, Spain, 2001), ISBN 84-205-3179-0Google Scholar
  128. 128.
    J. Colomer-Farrarons, P. Miribel-Català, A. Saiz-Vela, J. Samitier, A 60μW Low-Power Low-Voltage Power Management Unit for a Self-Powered System Based on Low-Cost Piezoelectric Powering Generators, Proceedings of the European Solid-State Circuit Conference (ESSCIRC’09), (2009) pp. 280–283Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Jordi Colomer-Farrarons
    • 1
    Email author
  • Pere Lluís Miribel-Català
    • 1
  1. 1.Electronics DepartmentUniversity of BarcelonaBarcelonaSpain

Personalised recommendations