Advertisement

CMOS Front-End Architecture for In-vivo Biomedical Subcutaneous Detection Devices

  • Jordi Colomer-FarraronsEmail author
  • Pere Lluís Miribel-Català
Chapter

Abstract

This chapter describes the design and conception of the Self-Powered CMOS Front-End Architecture for a Biomedical Subcutaneous Device. The entire architecture is presented in detail as well as the powering and communication through the inductive link. The power and communication antenna and the connections between the MHCP IC (Chapter 2), the BioChip IC (Chapter 3) and the sensor are also detailed afterwards. The results obtained with the final capsule prototype with a size less than 4.5 cm × 2.5 cm are shown and commented in depth. Problems regarding misalignments between the internal and external antennas are studied and the SOA (Safety Operation Area) region is introduced. Finally, the prototype has been validated as a detector.

Keywords

Low-power instrumentation amplifier Wireless implanted devices Self-powered device Event detector implantable device Inductive power transmission Biomedical telemetry 

References

  1. 1.
    E. Ghafar-Zadeh, M. Sawan, Toward fully integrated CMOS based capacitive sensor for lab-on-chip applications, IEEE International Workshop on Medical Measurements and Applications, MeMeA 2008, (May 2008), pp. 77–80Google Scholar
  2. 2.
    D. Barretino, Design considerations and recent advances in CMOS-based microsystems for point-of-care clinical diagnostics, in Proceedings of the IEEE International Symposium on Circuits and Systems, (2006), pp. 4362–4365Google Scholar
  3. 3.
  4. 4.
    L. Cantarero, J. Butler, J. Osborne, The adsorptive characteristics of proteins for polystyrene and their significance in solid-phase immunoassays. Anal. Biochem. 105, 375–382 (1980)CrossRefGoogle Scholar
  5. 5.
    O.A. Sadik, A.O. Aluoch, A. Zhou, Status of biomolecular recognition using electrochemical techniques. Biosens. Bioelectron. 24, 2749–2765 (2009)CrossRefGoogle Scholar
  6. 6.
    M. Sawan, H. Yamu, J. Coulombe, Wireless smart implants dedicated to multichannel monitoring and microstimulation. IEEE Circuits. Sys. Mag. 5, 21–39 (2005)CrossRefGoogle Scholar
  7. 7.
    C.M. Zierhofer, E.S. Hachmair, Geometric approach for coupling enhancement of magnetically coupled coils. IEEE Tran. Biomed. Eng. 43, 708–714 (1996)CrossRefGoogle Scholar
  8. 8.
    C. Sauer, M. Stanacevic, G. Cauwenberhs, N. Thakor, Power harvesting and telemetry in CMOS for implanted devices. IEEE Trans. Circuits Sys. 52(12), 2605–2613 (Dec 2005)CrossRefGoogle Scholar
  9. 9.
    Y. Li, J. Liu, A 13.56 MHz RFID transponder front-end with merged load modulation and voltage doubler-clamping rectifier circuits, IEEE International Symposium on Circuits and Systems, (2005), pp. 5095–5098Google Scholar
  10. 10.
    K. Myny, S. Van Winckel, S. Steudel, P. Vicca, S. De Jonge, M.J. Beenhakkers, C.W Sele, N.A.J.M. van Aerle, G.H. Gelink, J. Genoe, P. Heremans, An inductively-coupled 64b organic RFID tag operating at 13,56 MHz with a data rate of 787b/s, IEEE International Solid-State Circuits Conference, 290–614 (2008)Google Scholar
  11. 11.
    A. Gore, S. Chakrabartty, S. Pal, E. Alocilja, A multi-channel femtoampere-sensitivity conductometric array for biosensing applications, 28th IEEE Engineering in Medicine and Biology Science Conference, 6489–6492 (2006)Google Scholar
  12. 12.
    M.R. Haider, S.K. Islam, M. Zhang, A low-power processing unit for in vivo monitoring and transmission of sensor signals. Sensors Trans. J. 84(10), 1625–1632 (Oct 2007)Google Scholar
  13. 13.
    C. Sauer, M. Stanacevic, G. Cauwenberhs, and N. Thakor, Power harvesting and telemetry in CMOS for implanted devices. IEEE Trans. Circuits Sys. 52(12), 2605–2613 (Dec 2005)CrossRefGoogle Scholar
  14. 14.
    Y. Li, J. Liu, A 13.56 MHz RFID transponder front-end with merged load modulation and voltage doubler-clamping rectifier circuit, IEEE International Symposium on Circuits and Systems, 5095–5098 (2005)Google Scholar
  15. 15.
    K. Myny, S. Van Winckel, S. Steudel, P. Vicca, S. De Jonge, M.J. Beenhakkers, C.W Sele, N.A.J.M. van Aerle, G.H. Gelink, J. Genoe, P. Heremans, An inductively-coupled 64b organic RFID tag operating at 13,56 MHz with a data rate of 787b/s, IEEE International Solid-State Circuits Conference, 290–614 (2008)Google Scholar
  16. 16.
    M.R. Haider, S.K. Islam, S. Mostafa, Z. Mo, O. Taeho, Low-power low-voltage current readout circuit for inductively powered implant system. IEEE Trans. Biomed. Circuits Sys. 4(4), 205–213 (2010). ISSN: 1932-4545CrossRefGoogle Scholar
  17. 17.
    H.A. Wolpert, Use of continous glucose monitoring in the detection and prevention of hypoglycemia. J. Diabetes Sci. Technol. 1(1), 146–150 (Jan 2007)Google Scholar
  18. 18.
    Medtronic Minimed Inc, http://www.medtronicdiabetes.com/
  19. 19.
  20. 20.
    J.D. Newman, A.P.F. Turner, Home blood glucose biosesors: A commercial perspective. Biosens. Bioelectron. 20, 2435–2453 (2005)CrossRefGoogle Scholar
  21. 21.
    M. Frost, M.E. Meyerhoff, In vivo chemical sensors: Tackling biocompatibility. Anal. Chem. 78(21), 7370–7377 (2006)CrossRefGoogle Scholar
  22. 22.
    M.W. Jung, D.W. Kim, R.A. Jeong, H.C. Kim, Needle-type Multi-electrode Array Fabricated by MEMS Technology for the Hypodermic Continous Glucose Monitoring System. in Proceedings of the International Coference of EMBS. (San Francisco, 2004), pp. 1987–1989Google Scholar
  23. 23.
    H. Nim Choi, J. Hoon Han, J. Ae Park, J. Mi Lee, Won-Yong Lee, Amperometric glucose biosensor based on glucose oxidase encapsulated in carbon nanotube-titania-nafion composite film on platinized glassy carbon electrode. Electroanalysis 19(17), 1757–1763 (2007)CrossRefGoogle Scholar
  24. 24.
    A. Erdem, H. Karadeniz, A. Caliskan, Single-walled carbon nanotubes modified graphite electrodes for electrochemical monitoring of nucleis acids ad biomolecular interactions. Electroanalysis 21(3–5), 461–471 (2009)Google Scholar
  25. 25.
    J. Wang, In vivo glucose monitoring: Towards “Sense and Act” feedback-loop individualized medical systems. Talanta 75, 636–641 (2008)CrossRefGoogle Scholar
  26. 26.
    E. Lin Tan, B.D. Pereles, B. Horton, R. Shao, M. Zourob, K. Ghee Ong, Implantable biosensors for real-time strain and pressure monitoring. Sensors 8, 6396–6406 (Oct 2008)CrossRefGoogle Scholar
  27. 27.
    Positive ID/Verichip White Paper, Development of an Implantable Glucose Sensor, http://www.positiveidcorp.com/white-papers.html
  28. 28.
    S. Zimmermann, D. Fienbork, B. Stoeber, A.W. Flounders, D. Liepmann, in Proceeding Internatioal Conference on Solid-state Sensors. A microneedle-based glucose monitor: Fabrication on a wafer-level using in-device enzyme immobilization (Actuators and Microsystems, Boston, MA, 2003), pp. 99–102Google Scholar
  29. 29.
    A. Hassibi, T.H. Lee, A programmable 0.18-μm CMOS electrochemical sensor microarray for biomolecular detection. IEEE Sens. J. 6(6), 1380–1388 (Dec 2006)CrossRefGoogle Scholar
  30. 30.
    R.D. Beach, R.W. Conlan, M.C. Godwin, F. Moussy, Towards a miniature implantable in vivo telemetry monitoring system dinamically configurable as a potentiostat or galvanostat for two- and three-electrode biosensors. IEEE Tran. Instrum. Meas. 54(1), 61–72 (Feb 2005)CrossRefGoogle Scholar
  31. 31.
    M.R. Haider, S. Mostafa, S.K. Islam, A Low-Power Sensor Read-Out Circuit with FSK Telemetry for Inductively-Powered Implant System, in IEEE Midwest Symposium on Circuits and Systems, MWSCAS, (2008), pp. 450–453Google Scholar
  32. 32.
    J. Sacristán-Riquelme, F. Segura, M. Teresa Osés, Simple and efficient inductive telemetry system with data and power transmission. Microelectron. J. 39(1), 103–111 (Jan 2008)CrossRefGoogle Scholar
  33. 33.
    P. Vaillancourt, A. Djemouai, J.F. Harvey, M. Sawan, EM radiation behaviour upon biological tissues in a radio-frequency power transfer link for a cortical visual implant. 19th IEEE. Eng. Med. Biol. Sci. Conf. 6, 2499–2502 (1997)Google Scholar
  34. 34.
    J. Colomer-Farrarons, J. Brufau, P. Miribel-Català, A. Saiz-Vela, M. Puig-Vidal, J. Samitier, Power Conditioning Circuitry for a Self-Powered Mobile System Based on an Array of Micro PZT Generators in a 0.13 μM Technology, IEEE Insternational Symposium on Industrial Electronics, (June 2007), pp. 2353–2357Google Scholar
  35. 35.
    A. Lasia. Electrochemical Impedance Spectroscopy and Its Applications Modern Aspects of Electrochemistry, vol. 32, (New york, Kluwer Academic/Plenum Publisher, 1999), Chapter 2, pp. 143–243Google Scholar
  36. 36.
    L. Yang, Y. Li, C.L. Griffis, M.G. Johnson, Interdigitated microelectrode (IME) impedance sensor for the detection of ciable Salmonella typhimurium. Biosens. Bioelectron. 19(10), 1139–1147 (2004)CrossRefGoogle Scholar
  37. 37.
    A. De Marcellis, G. Ferri, M. Patrizi, V. Stornelli, A. D’Amico, C. Di Natale, E. Martinelli, A. Alimelli, R. Paolesse, An integrated analog lock-in amplifier for low-voltage low-frequency sensor interface, International Workshop on Advances in Sensors and Interface, IWASI, (June 2007), pp. 1–5Google Scholar
  38. 38.
    D. Rairigh, A. Mason, C. Yang, Analysis of on-chip impedance spectroscopy methodologies for sensor arrays. Sens. Lett. 4(4), 398–402 (2006)CrossRefGoogle Scholar
  39. 39.
    A.E. Moe, S.R. Marx, I. Bhinderwala, D.M. Wilson, A miniaturuzed lock-in amplifier design suitable for impedance measurements in cells. Proc. IEEE Sensors 1(24–27), 215–218 (AUTRICHE 2004)Google Scholar
  40. 40.
    Texas Instruments TRF7960 (Rev. E) on-line documentation, http://focus.ti.com/docs/prod/folders/print/trf7960.html
  41. 41.
    C.G. Zoski, Handbook of electrochemistery. Elseiber. (2007). ISBN: 0-444-51958-0Google Scholar
  42. 42.
    J.C. Lotters, W. Olthuis, P.H. Veltink, P. Bergveld, The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications. J. Micromech. Microeng. 7, 145–147 (1997). doi:10.1088/0960-1317/7/3/017ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Jordi Colomer-Farrarons
    • 1
    Email author
  • Pere Lluís Miribel-Català
    • 1
  1. 1.Electronics DepartmentUniversity of BarcelonaBarcelonaSpain

Personalised recommendations