Desert Aerosol: Characteristics and Effects on Climate

  • Guillaume A. d’Almeida
Part of the NATO ASI Series book series (ASIC, volume 282)


Major sources for crustal - derived aerosol are the earth’s arid and semiarid regions. Soil size distributions of different locations in the Sahara have, therefore, been analysed and allow us to hypothesize a particle loss mostly for the size range of radius smaller than 20 µm due to erosion. Cumulative mass distributions emphasize an apparent difference in the productivity of the soil types considered. Furthermore, the physical properties and radiative characteristics of desert dust such as size distribution, source strength, deposition rate, extinction, scattering, and absorption coefficients, single scattering albedo, asymmetry factor, and optical depth, that are relevant quantities required to estimate the aerosol impact on present day climate and likely to reconstruct the earth’s past climate, have been observed or computed, and discussed. About 600 – 700 Tg of crustal material are mobilized from the Sahara and 1800 – 2000 Tg worldwide and injected into the atmosphere each year. A considerable part of that amount contributes to the sediments of the Atlantic, the Mediterranean, and the Pacific. Both computed and observed data indicate desert dust as one of most prominant aerosol types with the highest variability in its microphysical components as well as in its radiative characteristics, and the best absorber in the atmospheric transparency window. It has been pointed out that the presence of desert dust leads to a warming due to the absorption of solar radiation in the dust layer and above the dust layer, a corresponding cooling due to the backscattered solar radiation, and a challenging warming due to the absorption of the thermal infrared radiation below the dust cloud.

key words

desert dust mineral aerosol Saharan dust source strength deposition rate radiative characteristics aerosol optical properties Sahara Africa 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Sarnthein: Sand Deserts During Glacial Maximum and Climatic Optimum, Nature 272, 43–46 (1978).CrossRefGoogle Scholar
  2. 2.
    J. - R. Petit, M. Briat, A. Royer, 1981: Ice Age Aerosol Content from East Antarctic Ice Core Samples and Past Wind Strength, Nature, 293, 391–394 (1981).CrossRefGoogle Scholar
  3. 3.
    D. Tanre, J.F. Geleyn, J. Slingo: First Results of the Introduction of an Advanced Aerosol - Radiation Interaction in the ECMWF Low Resolution Global Model, in H.E. Gerber and A. Deepak (eds.), Aerosol and their Climatic Effects, A Deepak Publishing, Hampton, Va., pp. 133–177 (1984).Google Scholar
  4. 4.
    J.H. Joseph: The Effect of a Desert Aerosol on a Model of General Circulation, in H. -J. Bolle (ed.), Proceedings of the Symposium on Radiation in the Atmosphere, Science Press, 487–492 (1977).Google Scholar
  5. 5.
    G.E. Shaw: Considerations on the Origin and Properties of the Antarctic Aerosol, Rev. Geophys. Space Phys., 8, 1983–1998 (1979a).CrossRefGoogle Scholar
  6. 6.
    C.G. Ehrenberg: Erläuterung eines neuen wirklichen Passatstaubes aus dem Atlantischen Dunkelmeere von 29. Okt. 1861, Monatsber. Kg. Preuss. Akad. Wiss., Berlin, 202–224 (1862).Google Scholar
  7. 7.
    W. Semmelhack: Die Staubfalle in nordwest afrikanischen Gebiet des Atlantischen Ozeans, Annalen der Hydrographie, 62, 273–277 (1934).Google Scholar
  8. 8.
    T.N. Carlson, J.M. Prospero: The Large Movement of Saharan Air Outbreak over the Northern Equatorial Atlantic. J. Appl. Meteorol. 11, 283–297 (1972).CrossRefGoogle Scholar
  9. 9.
    J.M. Prospero, T.N. Carlson: Vertical and Areal Distribution of Saharan Dust over the Western Equatorial North Atlantic Ocean, J. Geophys. Res., 77, 5255–5265 (1972).CrossRefGoogle Scholar
  10. 10.
    L. Schütz: Long - Range Transport of Desert Dust with Special Emphasis on the Sahara, Ann. N.Y. Acad. Sci. 338, 515–532 (1980).CrossRefGoogle Scholar
  11. 11.
    J.M. Prospero: Mineral and Sea - Salt Aerosol Concentration in the Various Ocean Regions. J. Geophys. Res., 84, 725–731 (1979).CrossRefGoogle Scholar
  12. 12.
    J.M. Prospero, R.A. Glaccum, R.T. Nees: Atmospheric Transport of Soil Dust from Africa to South America, Nature 289, 570–572 (1981).CrossRefGoogle Scholar
  13. 13.
    G.E. Shaw: Transport of Desert Aerosol to the Hawaiian Islands, J. Appl. Meteorol., 19, 1254–1259 (1980).CrossRefGoogle Scholar
  14. 14.
    M. Darzi, J.W. Winchester: Aerosol Characteristics at Mauna Loa Observatory, Hawaii, after East Asian Dust Storm Episodes, J. Geophys. Res., 87, 1251–1258 (1982).CrossRefGoogle Scholar
  15. 15.
    M. Uematsu, R.A. Duce, J.M. Prospero, L. Chen, J.T. Merrill, R.L. McDonald: Transport of Mineral Aerosol from Asia over the North Pacific Ocean, J. Geophys. Res., 88, 5343–5352 (1983).CrossRefGoogle Scholar
  16. 16.
    D.A. Braaten, T.A. Cahill, Size and Composition of Asian Dust Transported to Hawaii, Atmos. Environ. 20, 1105–1109 (1986).CrossRefGoogle Scholar
  17. 17.
    D.A. Gillette: On the Production of Soil Wind Erosion Aerosol Having the Potential for Long - Range Transport, J. Rech. Atmos., 8, 735–744 (1974).Google Scholar
  18. 18.
    D.A. Gillette, J. Adams, A. Endo, D. Smith, R. Kihl: Threshold Velocities for Input of Soil Particles with the Air by Desert Soils, J. Geophys. Res., 85, 5621–5630 (1980).CrossRefGoogle Scholar
  19. 19.
    G.A. d’Almeida, L. Schütz: Number, Mass, and Volume Distribution of Mineral Aerosol and Soils of the Sahara, J. Clim. Appl. Meteorol., 22, 233–243 (1983).CrossRefGoogle Scholar
  20. 20.
    G.A. d’Almeida: A model for Saharan Dust Transport, J. Clim. Appl. Meteorol., 24, 903–916 (1986).Google Scholar
  21. 21.
    G.A. d’Almeida: On the Variability of Desert Aerosol Radiative Characteristics, J. Geophys. Res. 93, 3017–3026 (1987).CrossRefGoogle Scholar
  22. 22.
    L. Schütz, R. Jaenicke: Particle Number and Mass Distribution above 10-4 cm Radius in Sand and Aerosol of the Sahara, J. Appl. Meteorol. 13, 863–870 (1974).CrossRefGoogle Scholar
  23. 23.
    A. Lerman: Geochemical Processes, Water and Sediment Environments, J. Wiley and sons, 481 pp (1979).Google Scholar
  24. 24.
    A. Meszaros, K. Vissy: Concentration, Size Distribution, and Chemical Nature of Atmospheric Aerosol Particles in Remote Oceanic Areas, J. Aerosol Sci. 5, 101–109 (1974).CrossRefGoogle Scholar
  25. 25.
    R.F. Lovett: Quantitative Measurement of Airborne Sea - Salt in the North - Atlantic, Tellus, 30, 358–364 (1978).CrossRefGoogle Scholar
  26. 26.
    J. Heintzenberg: Particle Size Distribution and Optical Properties of Arctic Haze, Tellus, 32, 251–260 (1980).CrossRefGoogle Scholar
  27. 27.
    G.A. d’Almeida, R. Jaenicke, P. Roggendorf, D. Richter: A New Sunphotometer for Network Operation, Appl. Opt. 22, 3796–3801 (1983).CrossRefGoogle Scholar
  28. 28.
    G.A. d’Almeida: Recommendation on Sunphotometer Measurements in the BAPMoN as Based on the Experience of a Dust Transport Study in Africa, World Meteorological Organisation, WMO/TR - 67, 30 pp, Geneva, (Switzerland) (1985).Google Scholar
  29. 29.
    F.E. Volz: Infrared Optical Constants of Ammonium Sulfate, Saharan Dust, Volcanic Premice, and Flyash, Appl. Opt., 12, 564–568 (1973).CrossRefGoogle Scholar
  30. 30.
    G.W. Grams, I.H. Blifford Jr., D.A. Gillette, P.B. Russel: Complex Index of Refraction of Airborne Soil Particles, J. Appl. Meteorol., 13, 459–471 (1974).CrossRefGoogle Scholar
  31. 31.
    J.F. Griffiths: Climates of Africa, in H.E. Landsberg (ed. in chief), World Survey of Climatology, Vol. 20, Elvesier Publishing Company, Amsterdam, London, New York, 604 pp (1972).Google Scholar
  32. 32.
    J.H. Joseph, A. Manes, D. Ashbel: Desert Aerosol Transported by Khamsinic Depressions and their Climatic Effects, J. Appl. Meteorol. 12, 792–797 (1973).CrossRefGoogle Scholar
  33. 33.
    S.T. Peterson, C.E. Junge: Sources of Particulate Matter in the Atmosphere, in W.W. Kellog and G.D. Robinson (eds.), Man’s Impact on Climate, MIT Press, 310–320 (1971).Google Scholar
  34. 34.
    C.N. Davies: Size Distribution of Atmospheric Aerosol Particles, Aerosol Sci., 5, 293–300 (1974).CrossRefGoogle Scholar
  35. 35.
    E.M. Patterson: Atmospheric Extinction Between 0.55 μm and 10.6 μm Due to Soil - derived Aerosol, Appl. Opt., 16, 2414–2418 (1977).CrossRefGoogle Scholar
  36. 36.
    G.A. d’Almeida, P. Koepke: An Approach to a Global Optical Aerosol Climatology, to be published in P. Hobbs and A. Deepak (eds.), Aerosol and Climate (1988).Google Scholar
  37. 37.
    G.E. Shaw: Aerosol at Mauna Loa: Optical Properties, J. Atmos. Sci., 36, 862–869 (1979b).CrossRefGoogle Scholar
  38. 38.
    G.E. Shaw: Atmospheric Turbidity over the Polar Regions, J. Appl. Meteorol., 21, 1080–1086 (1982)CrossRefGoogle Scholar
  39. 39.
    A. Angström: The Parameters of Atmospheric Turbidity, Tellus, 16, 64–75 (1964).CrossRefGoogle Scholar
  40. 40.
    P. Winkler: The Growth of Atmospheric Aerosol Particles as a Function of the Relative Humidity II; An Improved Concept of Mixed Nuclei, Aerosol Sci., 4, 373–387 (1973).CrossRefGoogle Scholar
  41. 41.
    G. Yamamoto, M. Tanaka: Increase of Global Albedo Due to Air Pollution, J. Atmos. Sci., 29, 1405–1412 (1972).CrossRefGoogle Scholar
  42. 42.
    W.M. Cunnington, P.R. Rowntree: Simulations of the Saharan Atmosphere Dependence on Moisture and Albedo, Quart. J.R. Met. Soc., 112, 971–999 (1986).Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Guillaume A. d’Almeida
    • 1
  1. 1.University of MunichMünchen 2F.R. Germany

Personalised recommendations