Advertisement

Aeolian-Derived Higher Plant Lipids in the Marine Sedimentary Record: Links with Palaeoclimate

  • J. G. Poynter
  • P. Farrimond
  • N. Robinson
  • G. Eglinton
Chapter
Part of the NATO ASI Series book series (ASIC, volume 282)

Abstract

The abundances and distributions of terrestrial higher plant lipids have been investigated in two cores from the Equatorial North Atlantic. Two distinct populations of n-alkanes (C23-C35) have been recognised, a predominant higher plant distribution and a subordinate distribution of unknown, possibly bacterial, origin. The abundance, flux and distribution of the predominantly higher plant component is shown to be linked to palaeoclimatic change. The utilization of the higher plant n-alkane distribution is proposed as a potential palaeoclimatic tool reflecting the temperature and/or the aridity of the continental dust source region. The abundance of presumed higher plant n-alkanols has been found to covary with higher plant n-alkanes.

Keywords

Oxygen Isotope Average Chain Length Oxygen Isotope Stage West African Coast Enewetak Atoll 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bligh E.G. and Dyer W.J. (1959) ′A rapid method of total lipid extraction and purification′ Can. J. Biochem. Physicol. 37, 911–917.CrossRefGoogle Scholar
  2. Boon J.J., Rijpstra W.I.C., de Lange F., de Leeuw J.W., Yashioka M. and Shimizu Y. (1979) ′Black sea sterol-molecular fossil for dinoflagellate blooms′ Nature 277 125–127.CrossRefGoogle Scholar
  3. Borges del Castillo J., Brooks C.J.W., Cambie R.C., Eglinton G., Hamilton R.J. and Pellitt (1967) ′The taxonomic distribution of some hydrocarbons in Gymnosperms′ Phytochemistry 6, 391CrossRefGoogle Scholar
  4. Bradley R.S. (1985) ′Quaternary paleoclimatology′ Allen and Unwin 472pp.Google Scholar
  5. Brassell S.C., Eglinton G., Maxwell J.R. and Philp R.P. (1978) ′Natural background of alkanes in the aquatic enviroment′ In: Aquatic pollutants,(eds Hutzinger O., Van Lelyveld I.H. and Zoeteman B.C.J.) pp69–86Google Scholar
  6. Brassell S.C., Brereton R.G., Eglinton G., Grimait J., Liebezeit G., Marlowe I.T., Pflaumann U. and Sarnthein M., (1986a).‘Palaeoclimati.c signals recognised by chemometric treatment of molecular stratigraphie data. In Leythauser D. and Rulikötter J. (Eds.), Advances in Organic Chemistry 1985. Org Geochem., 10, 649–660.Google Scholar
  7. Brassell S.C., Eglinton G., Marlowe I.T., Pflaumann U. and Sarnthein M. (1986b) ′Molecular stratigraphy: a new tool for climatic assessment′ Nature 320, 129–133.CrossRefGoogle Scholar
  8. Clark R.C.. and Blumer M. (1967) ′Distributions of n-paraffins in marine organisms and sediments′ Limnol. oceanogr. 12, 79–87.CrossRefGoogle Scholar
  9. Cranwell P.A. (1973) ′Chain-length distribution of n-alkanes from lake sediments in relation to post-glacial environmental change′Freshwat. Biol. 3, 259–265.CrossRefGoogle Scholar
  10. Cranwell P.A., Eglinton G. and Robinson N. (1987). Lipids of aquatic organisms as potential contributors to lacustrine sediments - II. Organic Geochemistry 11, 513–527.CrossRefGoogle Scholar
  11. Eglinton G. and Calvin M. (1967) ′Chemical fossils′ Sci. Am. 216, 32–43.CrossRefGoogle Scholar
  12. Eglinton G. and Hamilton R.J. (1967) ′Leaf epicuticular waxes′ Science 156, 1322–1335.CrossRefGoogle Scholar
  13. Gagosian R.B. and Peltzer E.T (1986) ′The importance of atmospheric input of terrestrial organic material to deep sea sediments′ Org. Geochem. 10, 661–669.CrossRefGoogle Scholar
  14. Gagosian R.B., Peltzer E.T. and Zafiriou O.C. (1981) ′Atmospheric transport of continentally derived lipids to the tropical North Pacific′ Nature 291, 312–314.CrossRefGoogle Scholar
  15. Gagosian R.B, Nigrelli G.E. and Volkman J.K. (1983) ′Vertical transport and transformation of biogenic organic compounds from a sediment trap experiment off the coast of. Peru. In: Coastal Upwelling: Its sediment record, (Eds. Suess E. and Theide J.) Plenum press, New York pp241–272.Google Scholar
  16. Gagosian R.B., E.T. Peltzer and J.T. Merrill (1987) ′Long-range transport of terrestrially derived lipids in aerosols from the South Pacific′ Nature 325, 800–803.CrossRefGoogle Scholar
  17. Han J. and Calvin M. (1970) ′Branched alkanes from blue-green algae′ J. Chem. Soc. Chem. Commun., 1460Google Scholar
  18. Hooghiemstra H. (1988) ′Changes of major wind belts and vegetation zones in NW Africa 20,000–5000 yr B.P. as deduced from a marine pollen record near Cap Blanc. Review of palaeobotan. and palynology. Google Scholar
  19. Hooghiemstra H., Bechler A. and Beug H.J. (1987) ′Isopoll.en maps for 18,000 years B.P. of the Atlantic offshore of Northwest Africa: Evidence for Paleowind circulation′ Palaeocirculation 6, 561–582Google Scholar
  20. Hooghiemstra H. and Agwu C.O.C. (in press) ′Changes in the vegetation and trade winds in the Equatorial Northwest Africa 140,000–70,000 as deduced from two marine pollen records′ Palaeogeog. palaeoclim. paiaeoecol.Google Scholar
  21. ten Haven H.L., Baas M., de Leeuw J.W. and Schenck P.A. ′Latte Quaternary Mediterranean sapropels, TI. Organic geochemistry and palynology of S1 sapropels and associated sediments′ Chemical Geology. 64 149–169Google Scholar
  22. Imbrie J., Hays J.D., Martinson D.G., McIntyre A., Mix A.C., Morley J.J., Pisias N.G., Prell W.L. and Shackleton N.J. (1984) ′The orbital theory of Pleistocene climate: support from A revised chronology of the marine 8180 record′ In: Milankovitch and climate 1, (Eds. Berger A.L. et al) 269–305Google Scholar
  23. Marlowe I.T., Green J.C., Neal A.C., Brassell S.C., Eglinton G. and Course P.A. (1984) ′Long chain (n-C37-C39) Alkenones in the Prymnesiophyceae. Distributions of Alkenones and lipids and their Taxonomic Significance′ Br. phycol. J. 19, 203–216.CrossRefGoogle Scholar
  24. Meyers P.A., Kawka O.E. and Whitehead D.R. (1984). Geolipid, pollen and diatom stratigraphy in post-glacial lacustrine sediments. Organic Geochemistry 6, 727–732.CrossRefGoogle Scholar
  25. Mienert J. (1986) ′Akustostratgraphie entwicklung der tiefenwasserzirkulation der letxten 3,5 millionen jahre ′Meteor′ Forsch-Ergebnisse 40, 19–86.Google Scholar
  26. Morris R. and Brassell S.C. (1988) ′Long-chain alkanediols: Biological markers for cyanobacterial contributions to sediments′ Lipids 23, 256–258.CrossRefGoogle Scholar
  27. Morrison R.I. (1969) ′Soil lipids′ In: Organic Geochemistry: methods and results (Eds. Eglinton G. and Murphy M.T.J.) Springer-verlag, Berlin pp558–575.Google Scholar
  28. Müller P.J. and Suess E. ′Productivity, sedimentation rate and sedimentary organic matter in the Oceans - Organic carbon preservation′ Deep sea research 26A, 1347–1362.Google Scholar
  29. Pearson K. (1901) ′On lines and planes of closest fit to systems of points in space′ Philosophical Magazine 6, 559–572.Google Scholar
  30. Pokras E.M. and Mix A.C. (1987) ′Earths precession cycle and quaternary climatic change in tropical Africa′ Nature 326, 486–487.CrossRefGoogle Scholar
  31. Prahl F.G. and Pinto Z.A., ′A Geochemical study of long-chain n-aldehydes in Washington coastal sediments′ Geochimica et Cosmoch.imica Acta 51, 1573–1582.Google Scholar
  32. Prell W.L., Imhrie J., Martinson D.G., Morley J.J., Pisias N.G., Shackleton N.J. and Streeter H.J. (1986) ′Graphic correlation of oxygen isotope stratigraphy application to the late quaternary′ Paleoceanography 2, 137–162.CrossRefGoogle Scholar
  33. Sachs M.H., Webb T. and Clark D.R., (1977) ′Paleoecological transfer functions′ Ann. Rev. Earth Planet. Sci. 5, 159–78.CrossRefGoogle Scholar
  34. Sarnthein M. (1984) ′Stable-isotope stratigraphy for the last 750–000 years: ′Meteor′ core 13519 from the eastern equatorial. Atlantic’ ′Meteor′ Forsch-Ergebnisse 38, 9–38.Google Scholar
  35. Sarnthein M. and Koopman B. (1980) ′Late Quaternary deep-sea record on Northwest African dust and wind circulation′ Paiaeocologv of Africa 12, 239–253.Google Scholar
  36. Sarnthein M., Tetzlaff G., Koopmann B., Wolter K. and Pflaumann U. (1981) ′Glacial and interglacial wind regimes over the eastern subtropical Atlantic and north west. Africa′ Nature 293, 193–196.CrossRefGoogle Scholar
  37. Sarnthein M., Winn K. and Zahn R. (in press) ′Paleoproductivity of Oceanic upweliing and the effect on Atmospheric CO2 and climatic change during deglaciation times’ In: Abrupt climatic change (Eds. Berger W.H. and Labeyrie L.D.).Google Scholar
  38. Simoneit B.R.T. (1976) ′Sources of the solvent-soluble organic matter in the glacial sequence of DSDP samples from the Norwegian-Greenland Sea, Leg 38 ′Initial reports of the Ocean drilling project XXXVIII U.S. Government. printing office Washington, 805–806.Google Scholar
  39. Simoneit B.R.T. and Eglinton G. (1977) ′Organic matter of eolian dust and its input to marine sediments’ In: Advances in Organic Geochemistry 1975, (Eds Campos R. and Goni J.) 415–430.Google Scholar
  40. Simoneit B.R.T, Chester R. and Eglinton G. (1977) ′Biogenic lipids in particulates from thé lower atmosphere over the eastern Atlantic′ Nature 267, 682–685.CrossRefGoogle Scholar
  41. Stabell B. (1986) ′Variations of diatom flux in the Eastern Equatorial Atlantic during the last 400,000 years ′Meteor′ cores 13519 and 13521′ Marine Geology 72, 305–323.CrossRefGoogle Scholar
  42. Stranksky K., Streibl M. and Herout V. (1967) ′Distribution of wax hydrocarbons in plants at different evolutionary levels′ Col. Czech. Chem. Commun. 32, 3213–3220.Google Scholar
  43. Suess F. (1980) ′Particulate organic flux in the Oceans-surface productivity and oxygen utilization′ Nature 288, 260–263.CrossRefGoogle Scholar
  44. Tissot B.P. and Welte D.H. (1984) ′Petroleum formation and occurrence′ 2nd edition. Springer-Verlag, Berlin. 538pp.Google Scholar
  45. Volkman J.K., Eglinton G., Corner E.D.S. and Sargent J.R. (1980) ′Novel unstaturated straight-chain C37-C39 methyl and ethyl ketones in marine sediments and a cocco.lit:hophore Emiliania huxleyi′ (Eds. Douglas A.G. and Maxwell J.R.) In: Advances in organic geochemistry,Pergamon press, Oxford, pp219–227.Google Scholar
  46. Wakeham S.G. and Farrington J.W. (1983) ′Fatty acids, wax esters, tri.gl.ycerols and alkyldiacylglycerols associated with sinking particles collected in the Peruupwelling’ Advances in organic geochemistry 1981’ (Eds. M. Bjorry et al) pp185–197.Google Scholar
  47. Yendle P.W., Poynter J.G., Farrimond P. Macfie H.J.H. and Eglinton G. (Submitted) ′ Ident.ifiction and quant:itation of multiple n-aikane inputs to sediments using iterative target transformation factor analysis′.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • J. G. Poynter
    • 1
  • P. Farrimond
    • 1
  • N. Robinson
    • 1
  • G. Eglinton
    • 1
  1. 1.Organic Geochemistry UnitUniversity of Bristol, School of Chemistry, Cantock’s CloseBristolUK

Personalised recommendations