Present Transport and Deposition Patterns of African Dusts to the North-Western Mediterranean

  • G. Bergametti
  • L. Gomes
  • E. Remoudaki
  • M. Desbois
  • D. Martin
  • P. Buat-Ménard
Part of the NATO ASI Series book series (ASIC, volume 282)


The elements associated with mineral aerosol particles exhibit, in the Western Mediterranean, sporadic but intense concentration peaks. Twenty dust events were recorded during a one-year sampling period with their frequency being maximum in spring and summer. Three-dimensional air-mass trajectories as well as satellite imagery (Meteosat II) show that all these events are associated with transport of soil dust from Africa. Three principal source-regions have been distinguished by using air-mass trajectories. Each of them seems to be characterized also by the chemical composition of the dust collected in Corsica. Moreover, the emissions and transport of dust particles from these various source-regions were found to occur during different times of the year. This has been explained by the seasonal atmospheric circulation patterns over North Africa and the Western Mediterranean.

Finally, total deposition measurements show that such dust transport events control a large fraction of the yearly atmospheric deposition of mineral aerosol particles to the Western Mediterranean. One single deposition event of short duration was found to account for 30% of the total annual flux for elements such as Si and Al.


Satellite Imagery Deposition Flux Dust Event Saharan Dust Subtropical Anticyclone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bergametti, G., 1987. ′Apports de matière par voie atmosphérique à la Méditerranée Occidentale: aspects géochimiques et météorologiques.′ These d′état, Université de Paris VII, 300p.Google Scholar
  2. Blank, M., M. Leinen, J.M. Prospero, 1985. ′Major asian aeolian inputs indicated by the mineralogy of aerosols and sediments in the Western North Pacific.′ Nature, 314, 84–86.CrossRefGoogle Scholar
  3. Bucher, A., J. Dubief, and C. Lucas, 1983. ′Retombées estivales de poussieres sahariennes sur l′Europe.′ Rev. Géogr. Phys. Géol. Dynam., 24, 153–165.Google Scholar
  4. Carlson, T.N., and J.M. Prospero, 1972. ′The large-scale movement of Saharan air outbreaks over the Northern Equatorial Atlantic.′ J. Appl. Meteorol., 11, 283–297.CrossRefGoogle Scholar
  5. Chester, R., H. Ederfield, J.J. Griffin, L.R. Johnson, and R.C. Pagham, 1972. ′Eolian dust along the eastern margins of the Atlantic Ocean.′, Mar. Geol., 13, 91–105.CrossRefGoogle Scholar
  6. Chester, R., A.G. Griffiths, and J.M. Hirst, 1979. ′The influence of soil sized atmospheric particulates on the elemental chemistry of deep-sea sediments of the northeastern Atlantic.′ Mar. Geol., 32, 141–154.CrossRefGoogle Scholar
  7. Chester, R., E.J. Sharple, G.S. Sanders, and A.C. Saydam, 1984. ′Saharan dust incursion over the Tyrrhenian sea.′ Atmos. Environ., 18, 929–935.CrossRefGoogle Scholar
  8. Coudé-Gaussen, G., C. Mosser, P. Rognon, and J. Tourenq, 1982. ′Une accumulation de loess du Pleistocene supérieur dans le Sud-Tunisien: la coupe de Téchine.′ Bull. Soc. Géol. France, 24, 283–292.Google Scholar
  9. Dauphin, J.P., 1983. ′Eolian quartz granulometry as a paleowind indicator in the Northeast Equatorial Atlantic, North Pacific and Southeast equatorial Pacific.′ Ph. D Thesis, University of Rhode Island, Kingston, Rhode Island (USA).Google Scholar
  10. Dubief, J., 1979. ′Review of the North African Climate with Particular Emphasis on the Production of Eolian Dust in the Sahel Zone and in the Sahara.′ in “Saharan Dust”, C. Morales, ed. J. Wiley and Sons, pp 27–48.Google Scholar
  11. Duce, R.A., R. Arimoto, B.J. Ray, C.K. Unni, and P.J. Harder, 1983. ′Atmospheric trace elements at Enewetak Atoll: 1. Concentrations, sources and temporal variability.′ J. Geophys. Res., 88, 5321–5342.CrossRefGoogle Scholar
  12. Elichegaray, C., A.L. Dutot, B. Grubis, and R. Vié le Sage, 1981. ′Dosage par fluorescence X des aérosols atmosphériques: détermination des facteurs de correction.′ Analusis, 9, 492–497.Google Scholar
  13. Galloway, J.N., J.D. Thornton, S.A. Norton, H.L. Volchok, and R.A. Mac Lean, 1982. ′Trace metals in atmospheric deposition: a review and assessment.′ Atmos. Environ., 16, 1677–1700.CrossRefGoogle Scholar
  14. Ganor, E., and V. Mamane, 1982. ′Transport of saharan dust across the eastern Mediterranean.′ Atmos. Environ., 10, 1079–1084.Google Scholar
  15. Griffin, J.J., and E.D. Goldberg, 1968. ′Clay mineral distribution in the world ocean.′ Deep-Sea Res., 15, 333–359.Google Scholar
  16. Jaffrezo, J.L., 1987. ′Etude du lessivage des aérosols atmosphériques par les précipitations.′ Ph D Thesis, Université Paris VII, 183 pp.Google Scholar
  17. Kalu, A.E., 1979. ′The African dust plume: its characteristics and propagation across West Africa in winter.′ in Saharan Dust, C. Morales ed., J. Wiley and Sons, pp 95–118.Google Scholar
  18. Lefèvre, R., A. Gaudichet, and P. De Felice, 1986. ′Caractérisation chimico-minéralogique des flux microparticulaires dans la basse atmosphère de la Méditerranée moyenne. Permanence et fluctuation des apports atmosphériques à la sédimentation.′ C. R. Acad. Sc. Paris, 303, 1215–1220.Google Scholar
  19. Lorenc, A., I. Rutherford, and G. Larsen, 1977. ′The E.C.M.W.F analysis and data assimilation scale analysis of mass and wind fields.′ ECMWF Technical Report,N°6, Reading, England.Google Scholar
  20. Losno, R., G. Bergametti, and G. Mouvier, 1987. ′Determination of optima conditions for atmospheric aerosols analyses by X-Ray Fluorescence.′ Environ. Tech. Lett., 8, 77–87.CrossRefGoogle Scholar
  21. Löye-Pilot, M.D., J.M. Martin, and J. Morelli, 1986. ′Influence of saharan dust on the rain acidity and atmospheric input to the Mediterranean.′ Nature, 321, 427–428.CrossRefGoogle Scholar
  22. Martin, D., C. Mithieux, and B. Strauss, 1987. ′On the use of the synoptic vertical wind component in a transport trajectory model.′ Atmos. Environ., 21, 45–52.CrossRefGoogle Scholar
  23. Mason, B, 1966. ′Principles of geochemistry.′ 3rd edition, J. Wiley and Sons ed. New-York.Google Scholar
  24. Miller, J.M., D. Martin, and B. Strauss, 1987. ′A comparison of results from two trajectory models used to produce flow climatologies to the Western Mediterranean.′ NOAA Technical Memorandum, ERL ARL151, NOAA, Air Resources Laboratory, Silver Spring, Maryland (USA).Google Scholar
  25. Paquet, H., G. Coudé-Gaussen, and P. Rognon, 1984. ′Etude minéralogique de poussières sahariennes le long d′un itinéraire entre 19° et 35° de latitude nord.′ Rev. Geol. Dyn. Geogr. Phys., 25, 257–265.Google Scholar
  26. Prodi, F., and G. Fea, 1979. ′A case of transport and deposition of saharan dust over the italian peninsula and southern Europe.′ J. Geophys. Res., 84, 6951–6960.CrossRefGoogle Scholar
  27. Prodi, F., G. Santachiara, and F. Oliosi, 1983. ′Characterization of aerosols in marine environments (Mediterranean, Red Sea, and Indian Ocean).′ J. Geophys. Res., 88, 10957–10968.CrossRefGoogle Scholar
  28. Prospero, J.M., and T.N. Carlson, 1972. ′Vertical and areal distribution of Saharan dust over the western equatorial North Atlantic ocean.′ J. Geophys. Res., 77, 5255–5265.CrossRefGoogle Scholar
  29. Prospero, J.M., 1981. ′Eolian transport to the world ocean.′ in The oceanic lithosphere, 7, The Sea, C. Emiliani ed., John Wiley and Sons, New-York.Google Scholar
  30. Rahn, K.A., 1976. ′Silicon and aluminium in atmospheric aerosols: crust-air fractionnation ?′ Atmos. Environ, 10, 597–601, 1976.Google Scholar
  31. Rea, D.K., M. Leinen, and T. Janecek, 1985. ′A geological approach to the long term history of atmospheric circulation.′ Science, 227, 721–725.CrossRefGoogle Scholar
  32. Raynor, G.S., and J.V. Hayes, 1982. ′Concentrations of some ionic species in Central Long Island (New-York) precipitations in relation to meteorological variables.′ Wat. Air Soil Pollut., 17, 309–335.Google Scholar
  33. Reiff, J, G.S. Forbes, F.T.M. Spieksma, and J.J. Reynders, 1986. ′African dust reaching northwestern Europe: A case of study to verify trajectory calculations.′ J. Climatol. Appl. Meteorol., 25, 1543–1567.CrossRefGoogle Scholar
  34. Rex, R.W., and E.D. Goldberg, 1958. ′Quartz contents in pelagic sediments of the Pacific Ocean.′ Tellus, 10, 153–159.CrossRefGoogle Scholar
  35. Sarnthein, M., J. Thiede, U. Pflaumann, H. Erkenkeuser, D. Fütterer, B. Koopmann, H. Lange, and E. Seibold, 1982. ′Atmospheric and oceanic patterns off Northwest Africa during the past 25 million years.′ in Geology of the Northwest African Continental Margin, edited by U. Von Rad, K. Linz, M. Sarnthein, and E. Seibold, pp. 545–604.Google Scholar
  36. Schütz, L., and M. Sebert, 1987. ′Mineral aerosol and source identification.′ J. Aerosol Sci., 18, 1–10.CrossRefGoogle Scholar
  37. Scott, B.C., 1978. ′Parametrization of sulfate removal by precipitation.′ J. Appl. Meteorol., 17, 1375–1389.CrossRefGoogle Scholar
  38. Tomadin, L., R. Lenaz, V. Landuzzi, A. Mazucotelli, and R. Vannucci, 1984. ′Wind-blown dusts over the Central Mediterranean.′ Oceanologica Acta, 7, 13–23.Google Scholar
  39. Uematsu, M., R.A. Duce, and J.M. Prospero, 1985. ′Deposition of atmospheric mineral particles in the norththe north Pacific Ocean.′ J. of Atmos. Chemi., 3, 123–128.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • G. Bergametti
    • 1
  • L. Gomes
    • 1
  • E. Remoudaki
    • 1
  • M. Desbois
    • 2
  • D. Martin
    • 3
  • P. Buat-Ménard
    • 4
  1. 1.Laboratoire de Physico-Chimie de l′Atmosphère UA CNRS 717Université Paris VIIParis Cedex 05France
  2. 2.Laboratoire de Météorologie DynamiqueEcole PolytechniquePalaiseauFrance
  3. 3.Etablissement d′Etudes et de Recherches MétéorologiquesCentre de Recherches en Physique de l′AtmosphèreMagny les HameauxFrance
  4. 4.Centre des Faibles RadioactivitésLaboratoire Mixte CNRS-CEAGif/Yvette CedexFrance

Personalised recommendations