Relevance of Chaos to Quantum Mechanics

  • Giulio Casati
  • Giorgio Mantica
  • Italo Guarneri
Part of the NATO ASI Series book series (ASIC, volume 200)


The relevance of the concept of chaos to Quantum Mechanics is discussed in this paper. We consider the problem of subthreshold ionization of Rydberg Hydrogen atoms, showing what relations are to be expected between classical chaotic dynamics and quantum motion. The phenomenon of Quantum Localization plays a central role in our description, which is completed by numerical computations confirming the theoretical results.


Quantum Mechanics Correspondence Principle Quantum Localization Microwave Cavity Quantum Evolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    Proc. Int’l Conf.on Quantum Chaos, Como 1983, G. Casati Ed. (Plenum, 1985).Google Scholar
  2. (2).
    Joseph Ford, ‘Chaos, Solving The Unsolvable, Predicting The Unpredictable!’, in Chaotic Dynamics and Fractals, M. Barnsley and S. Demko Eds. ( Academic Press, New York 1986 ).Google Scholar
  3. (3).
    G. Casati I. Guarneri and G. Mantica, in Proc. Int’l Conf.on Quantum Chaos, Como 1983; Random Matrices as Models for the Statistics of Quantum Mechanics’, Physica D, to appear.Google Scholar
  4. (4).
    J.E. Bayfield, P.M. Koch, Phys. Rev. Lett. 33 (1974) 258.ADSCrossRefGoogle Scholar
  5. (5).
    B. Delone, V.P. Krainov, D.L. Shepelyansky, Usp. Fiz. Nauk 140 (1983); Sov. Phys. Uspeky 26 (1983) 551.CrossRefGoogle Scholar
  6. (6).
    D.L. Shepelyansky, in Proc. Int’l Conf.on Quantum Chaos, Como 1983 G. Casati Ed. (Plenum, 1985 ).Google Scholar
  7. (7).
    G. Casati, B.V. Chirikov and D.L. Shepelyansky, Phys. Rev. Lett. 53 (1984) 2525.ADSCrossRefGoogle Scholar
  8. (8).
    J.E. Bayfield, L. Pinnaduwage, Phys. Rev. Lett. 54 (1985) 313.ADSCrossRefGoogle Scholar
  9. (9).
    G. Casati, B.V. Chirikov, I. Guarneri, D.L. Shepelyansky, Phys. Rev. Lett. 57 (1986) 823.ADSCrossRefGoogle Scholar
  10. (10).
    J.G. Leopold, I.C. Percival, Phys. Rev. Lett. 41 (1978) 944. J. Phys. B 12 (1979) 709.ADSCrossRefGoogle Scholar
  11. (11).
    R.V. Jensen, Phys. Rev. A 30 (1984) 386.MathSciNetADSCrossRefGoogle Scholar
  12. (12).
    K.A.H. Van Leeuven et al. Phys. Rev. Lett. 55 (1985) 2231.ADSCrossRefGoogle Scholar
  13. (13).
    R. Blumel and U. Smilansky, submitted to Phys. Rev. Lett.Google Scholar
  14. (14).
    J.N. Bardsley, B. Sundaram, Phys. Rev. A 32 (1985), 689.ADSGoogle Scholar
  15. (15).
    P.M. Koch, in Fundamental Aspects of Quantum Theory, V. Gorini and A. Frigerio eds. Plenum Press (1987).Google Scholar
  16. (16).
    G. Casati, B.V. Chirikov, I. Guarneri and D.L. Shepelyansky, Phys. Rev. Lett. 56 (1986) 2437.ADSCrossRefGoogle Scholar
  17. (17).
    K.J. Yajima, Comm. Math. Phys. 87 (1982) 331.MathSciNetADSzbMATHCrossRefGoogle Scholar
  18. (18).
    S. Graffi, V. Grecchi and H.J. Silverstone, Ann. Inst. Poincare 42 (1985) 215.MathSciNetzbMATHGoogle Scholar
  19. (19).
    J. Bellissard, ‘Stability and Instability in Quantum Mechanics’, in ‘Trends in The Eighties’, Lect. Notes in Math. P. Blanchard ed. 1985.Google Scholar
  20. (20).
    S. Fishman, D.R. Grempel and R.E. Prange, Phys. Rev. Lett. 49 (1982) 509. Phys. Rev. A 29 (1984) 1639.MathSciNetADSCrossRefGoogle Scholar
  21. (21).
    G. Casati and I. Guarneri, Comm. Math. Phys. 95 (1984), 121.MathSciNetADSzbMATHCrossRefGoogle Scholar
  22. (22).
    G. Casati, J. Ford, F. Vivaldi and I. Guarneri, ‘On the Search for Randomness in The Kicked Quantum Rotator’, Phys. Rev. A, to appear.Google Scholar
  23. (23).
    B.V. Chirikov, D.L. Shepelyansky, F.M. Izrailev, Soviet Scient. Reviews 2C (1981) 209.MathSciNetGoogle Scholar
  24. (24).
    B.V. Chirikov, D.L. Shepelyansky, Preprint 85–29, INP Novosibirsk 1985.Google Scholar

Copyright information

© D. Reidel Publishing Company 1987

Authors and Affiliations

  • Giulio Casati
    • 1
  • Giorgio Mantica
    • 1
  • Italo Guarneri
    • 2
  1. 1.Dipartimento di Fisicadell’Università di MilanoMilanoItaly
  2. 2.Dipartimento di Fisica Teorica e NucleareUniversità di PaviaItaly

Personalised recommendations