Advertisement

Van Der Waals Coupling Between Internal Rotation and Molecular Vibrations. The Methyl Rotor Effect on IVR

  • George E. Ewing
  • Robert J. Longfellow
  • David B. Moss
  • Charles S. Parmenter
Chapter
  • 54 Downloads
Part of the NATO ASI Series book series (ASIC, volume 200)

Abstract

New intramolecular vibrational redistribution (IVR) lifetimes for S1, p-fluorotoluene (pFT) confirm the accelerating effect of the methyl rotor on IVR. A theory is outlined, based on van der Waals collisional interactions between the methyl hydrogens (internal rotation) and ring atoms. These interactions are modulated by ring vibrations leading to internal rotation-vibration coupling. The calculated coupling matrix elements and selection rules are sufficient to account for the special state mixing that is a prerequisite to the accelerated IVR dynamics.

Keywords

Internal Rotation Vibrational Level Rotor Energy Molecular Vibration Ring Vibration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K.W. Holtzclaw and C.S. Parmenter, J. Chem. Phys., 84, 1099 (1986).ADSCrossRefGoogle Scholar
  2. 2.
    B.M. Stone and C.S. Parmenter, 0J. Chem. Phys., 84, 4710 (1986).ADSCrossRefGoogle Scholar
  3. 3.
    J.B. Hopkins, D.E. Powers, and R.E. Smalley, J. Chem. Phys., 71, 3886 (1979); J.B. Hopkins, D.E. Powers, and R.E. Smalley, J. Chem. Phys., 72, 5049 (1980); J.B. Hopkins, D.E. Powers, and R.E. Smalley, J. Chem. Phys., 73, 683 (1980); 74, 745 (1981).ADSCrossRefGoogle Scholar
  4. 4.
    G.M. Steward and J.D. McDonald, J. Chem. Phys., 78, 3907 (1983).ADSCrossRefGoogle Scholar
  5. 5.
    K. Okuyama, N. Mikami, and M, Ito, J. Phys. Chem., 89, 5617 (1985).CrossRefGoogle Scholar
  6. 6.
    J.H.S. Green, Spectrochim. Acta 26A, 1503 (1970); J.K. Wilmshurst and A.J. Bernstein, Can. J. Chem., 35, 911 (1957).ADSGoogle Scholar
  7. 7.
    R.A. Coveleskie, D.A. Dolson, and C.S. Parmenter, J. Phys. Chem., 89, 645 (1985).CrossRefGoogle Scholar
  8. 8.
    R.A. Coveleskie, D,A. Dolson, and C.S. Pamenter, J. Phys. Chem., 89, 655 (1985).CrossRefGoogle Scholar
  9. 9.
    R.A. Coveleskie, D.A. Dolson, D.B. Moss, S,C, Munchak, and C.S. Parmenter, Chem. Phys.,96, 191 (1985).CrossRefGoogle Scholar
  10. 10.
    D.B. Moss, C.S. Parmenter and G.E. Ewing, (submitted)Google Scholar
  11. 11.
    T. Cvitas, J.M. Hollas, and G» Kirby, Mol. Phys., 19, 305 (1970).ADSCrossRefGoogle Scholar
  12. 12.
    T. Cvitas and J.M. Hollas, Mol. Phys., 20, 645 (1971).ADSCrossRefGoogle Scholar
  13. 13.
    N.L. Allinger and Y.H. Yuh, QCPE Program No. 395, Indiana University (1980).Google Scholar
  14. 14.
    R.N. Schwartz, Z.I. Slawsky and K.F. Herzfeld, J. Chem. Phys., 20, 1591 (1952); F.I. Tanczos, J. Chem. Phys., 25, 439 (1956).ADSCrossRefGoogle Scholar
  15. 15.
    G.E. Ewing, J. Phys. Chem., 90, 1790 (1986).Google Scholar

Copyright information

© D. Reidel Publishing Company 1987

Authors and Affiliations

  • George E. Ewing
    • 1
  • Robert J. Longfellow
    • 1
  • David B. Moss
    • 1
  • Charles S. Parmenter
    • 1
  1. 1.Department of ChemistryIndiana UniversityBloomingtonUSA

Personalised recommendations