Rotation Vibration and Electronic Relaxation

  • A. Amirav
  • J. Jortner
Part of the NATO ASI Series book series (ASIC, volume 200)


In this paper we present experimental results demonstrating the manifestation of Intramolecular Vibrational energy Redistribution (IVR) on the vibrational energy dependence of the emission quantum yield in anthracene and 9-cyanoanthracene. Strong rotational effects on the fluorescence quantum yields from vibrational states in the S1 manifold of 9-cyanoanthracene were observed, which serve as the fingerprints of Coriolis coupling, serving as the dominant vibronic coupling mechanism leading to IVR. We discuss the possible manifestation of intratriplet rotational induced IVR in pyrazine as the dominant channel that controls its controversial S1 excited state dynamics, invoking Vibrational Crossing as a new intra and interstate mixed intramolecular radiationless process. We conclude that rotational effects play a central role in IVR, which can strongly enhance interstate electronic relaxation.


Electronic Relaxation Rotation Vibration Coriolis Coupling Emission Quantum Yield Excited State Dynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F.A. Novak and S.A. Rice, J. Chem. Phys. 71, 4680 (1979) and ibid 73, 858 (1980)MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    a) E. Riedle and H.J. Neusser, J. Chem. Phys. 80, 4686 (1984) b) E. Riedle, H.J. Neusser and E.W. Schlag, J. Phys. Chem. 86, 4847 (1982).ADSCrossRefGoogle Scholar
  3. 3.
    A. Ami rav and J. Jortner, J. Chem. Phys. 84, 1500 (1986).ADSCrossRefGoogle Scholar
  4. 4.
    a) K.E. Drabe and J. Kommandeur. To be published in “Excited State” Editor E.C. Lim. b) J. Kommandeur, B. J. van Der Meer, H. Th. Jonkman in “Intramolecular Dynamics” eds. J. Jortner and B. Pullman .D Reidel Publ. Dordrecht (Holland) 1982, p. 259.Google Scholar
  5. 5.
    E. Riedle, H.J. Neusser, E.W. Schlag and S.H. Lin, J. Phys. Chem. 88, 198 (1984).CrossRefGoogle Scholar
  6. 6.
    A. Amirav, Chem. Phys. (in press).Google Scholar
  7. 7.
    M. Sonnenschein, A. Amirav and J. Jortner, J. Phys. Chem. 80, 1050 (1984)Google Scholar
  8. 8.
    A. Amirav, C. Horovitz and J. Jortner, submitted to J. Chem. Phys.Google Scholar
  9. 9.
    W.R. Lambert, P.M. Felker and A.H. Zewail, J. Chem. Phys. 81, 2209 (1984).ADSGoogle Scholar
  10. 10.
    C.S. Huang, J.C. Hsieh and E.C. Lim, Chem. Phys. Lett. 28, 130 (1974).ADSCrossRefGoogle Scholar
  11. 11.
    A. Amirav, U. Even and J. Jortner, 75, 3370 (1981).Google Scholar
  12. 12.
    A. Amirav, J. Jortner, S.Okajima and E.C. Lim, Chem. Phys. Lett. 126, 487 (1986).ADSCrossRefGoogle Scholar
  13. 13.
    D. Scharf, M.Sc. Thesis, Tel Aviv University (1983).Google Scholar
  14. 14.
    P.M. Felker and A.H. Zewail, J. Chem. Phys. 82, 2994 (1985).ADSCrossRefGoogle Scholar

Copyright information

© D. Reidel Publishing Company 1987

Authors and Affiliations

  • A. Amirav
    • 1
  • J. Jortner
    • 1
  1. 1.School of ChemistryTel-Aviv UniversityTel AvivIsrael

Personalised recommendations