Advertisement

A Schrödinger Equation Analog to the Generalized Langevin Equation of Classical Mechanics, with Application to Reactive Flux Correlation Functions

  • William H. Miller
Chapter
Part of the NATO ASI Series book series (ASIC, volume 200)

Abstract

Within the time-dependent self consistent field (TDSCF) approximation it is shown that a Schrödinger equation can be derived which is analogous to the generalized Langevin equation (GLE) of classical mechanics. Application of this to evaluate reactive flux autocorrelation functions is discussed.

Keywords

SchrOdinger Equation Reactive Flux Consistent Field Generalize Langevin Equation Reidel Publishing Company 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    (a) W. H. Miller, J. Phys. Chem. 87, 3811 (1983). (b) W. H. Miller, in The Theory of Chemical Reaction Dynamics, ed. D. C. Clary, Reidel, Boston, 1986, pp. 27–45.CrossRefGoogle Scholar
  2. 2.
    For example, S. A. Adelman and J. D. Doll, J. Chem. Phys. 61, 4242 (1974); 64, 2375 (1976).ADSCrossRefGoogle Scholar
  3. 3.
    R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integral, McGraw-Hill, N.Y., 1965.Google Scholar
  4. 4.
    a) W. H. Miller, S. D. Schwartz, and J. W. Tromp, J. Chem. Phys. 79, 4889 (1983). (b) R. Jaquet and W. H. Miller, J. Phys. Chem. 89, 2139 (1985). (c) K. Yamashita and W. H. Miller, J. Chem. Phys. 82, 5475 (1985).ADSCrossRefGoogle Scholar
  5. 5.
    a) D. Thirumalai and B. J. Berne, J. Chera. Phys. 79, 5029 (1983); (b) D. Thirumalai, E. J. Bruskin, and B. J. Berne, ibid. 79, 5063 (1983); (c) D. Thirumalai and B. J. Berne, ibid. 81, 2512 (1984).ADSCrossRefGoogle Scholar
  6. 6.
    J. D. Doll, J. Chem. Phys. 81, 3536 (1984).MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    E. C. Behrmann, G. A. Jongeward, and P. G. Wolynes, J. Chem. Phys. 79, 6277 (1983).ADSCrossRefGoogle Scholar
  8. 8.
    See, for example, (a) A. K. Kerman and S. E. Koonin, Ann. Phys. (N.Y.) 100, 332 (1976); (b) J. W. Negele, Rev. Mod. Phys. 54, 91 (1982).MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. 9.
    P. A. M. Dirac, Proc. Camb. Phil. Soc. 26, 376 (1930).ADSzbMATHCrossRefGoogle Scholar
  10. 10.
    Ref. 3 p. 64.Google Scholar

Copyright information

© D. Reidel Publishing Company 1987

Authors and Affiliations

  • William H. Miller
    • 1
    • 2
  1. 1.Department of ChemistryUniversity of CaliforniaBerkeleyUSA
  2. 2.Materials and Molecular Research DivisionLawrence Berkeley LaboratoryBerkeleyUSA

Personalised recommendations