Advertisement

Theoretical Studies of Overtone-Induced Chemical Reactions

  • T. Uzer
  • James T. Hynes
Chapter
Part of the NATO ASI Series book series (ASIC, volume 200)

Abstract

Overtone-induced chemical reactions are studied theoretically via a combination of classical trajectories and nonlinear resonance analysis. The examples discussed are 1) a model unimolecular isomerization (akin to the HCN → HNC reaction) subsequent to a CH bond excitation, 2) the dissociation of hydrogen peroxide to hydroxyl radicals after an OH bond excitation and 3) the model dissociation of a bond remote from an initial excitation site, as influenced by an intervening metal atom “blocker”. In all these examples, emphasis is given to the mechanism, time scales and possible “nonstatistical” character of the energy flow to the reaction site.

Keywords

Energy Flow Classical Trajectory Transition State Theory Fermi Resonance Morse Oscillator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    See e.g. D. W. Noid, M. L. Koszykowski and R. A. Marcus, Annu. Rev. Phys. Chem. 32, 267 (1981); W. L. Hase, in Dynamics of Molecular Collisions, Part B, W. H. Miller, ed. ( Plenum, New York, 1986 ).ADSCrossRefGoogle Scholar
  2. 2.
    See, e.g., F.F. Crim, Annu. Rev. Phys. Chem. 35, 657 (1984) ; J. W. Wong and C. B. Moore, J. Chem. Phys. 77, 603 (1982); J.W. Perry and A. H. Zewail, J. Phys. Chem. 86, 5197 (1982); D.W. Chandler, W.E. Farneth and R. N. Zare, J. Chem. Phys. 77, 4447 (1982); K.V. Reddy, D.F. Heller and M. J. Berry, ibid. 78, 2817(1983); C.I. Manzanares, N.L.S. Yamasaki, E. Wietz and T.Knudtson, Chem. Phys. Lett. 117, 477 (1985); J.E. Baggott, M.-C. Chang, R.N. Zare, H. R. Dubal and M. Quack, J. Chem.Phys. 82, 1186 (1985).ADSCrossRefGoogle Scholar
  3. 3.
    E.L. Sibert, W.P. ReinHardt and J. T.Hynes, J. Chem.Phys. 77. 3583 (1982); C. Jaffe and P. Brumer, ibid. 73, 5646 (1980); M. S. Child and L. Halonen, Adv. Chem. Phys. 57,1 (1984). See also comments by R. A. Marcus and M. S. Child in Faraday Discuss. Chem. Soc. 75, 157 (1983).ADSCrossRefGoogle Scholar
  4. 4.
    E.L. Sibert, W. P. Reinhardt and J. T. Hynes, Chem. Phys. Lett. 92, 455 (1982); J.Chem.Phys. 81, 1115,1135 (1984).ADSCrossRefGoogle Scholar
  5. 5.
    J. S. Hutchinson, J. T. Hynes and W. P. Reinhardt, J. Phys. Chem. 90, 3528 (1986); E. L. Sibert, J. S. Hutchinson, J. T. Hynes and W. P. Reinhardt, in Ultrafast Phenomena IV, D. H. Auston and K. B. Eisenthal, eds. ( Springer-Verlag, New York, 1984 ). p336.CrossRefGoogle Scholar
  6. 6.
    J. S. Hutchinson, W. P. Reinhardt and J. T. Hynes, J. Chem. Phys. 79, 4247 (1983); J. S. Hutchinson, J. T. Hynes and W. P. Reinhardt, Chem. Phys. Lett. 108, 253 (1984); J. S. Hutchinson, J. Chem. Phys. 82, 22 (1985); T. A. Holme and J. S. Hutchinson, ibid. 93, 419ADSCrossRefGoogle Scholar
  7. 7.
    T. Uzer and J. T. Hynes, Chem. Phys. Lett. 113, 483 (1985).ADSCrossRefGoogle Scholar
  8. 8.
    T. Uzer, J. T. Hynes and W.P. Reinhardt, J. Chem. Phys. 1986, in press.Google Scholar
  9. 9.
    T. Uzer and J. T. Hynes, unpublished.Google Scholar
  10. 10.
    A. G. Maki and R.L. Samsm, J. Chem.Phys. 75, 4178 (1981).ADSCrossRefGoogle Scholar
  11. 11.
    K.V. Reddy and M.J. Berry, Chem. Phys. Lett. 52,111(1977).ADSCrossRefGoogle Scholar
  12. 12.
    D.G. Truhlar, W.L. Hase and J. T. Hynes, J. Phys. Chem. 877, 2664 (1983).CrossRefGoogle Scholar
  13. 13.
    T. A Holme and J. S. Hutchinson, J. chem Phys. 83, 2860 (1985); Z. Bacic, R. B. Gerber and M. A. RAtner, J. Phys. Chem. 90, 3606(1986).ADSCrossRefGoogle Scholar
  14. 14.
    T.R. Rizzo, C. C Hayden and F. F. Crim, Faraday Discuss. Chem. Soc. 75, 223 (1983) (see also the discussion reamrks by H.R. Dubal and M. Quack); J.Chem. Phys. 81, 4501(1984).CrossRefGoogle Scholar
  15. 15.
    L. V. Butler, R. M. Ticich, M. D. Likar and F. F. Crim, J. Chem. Phys. 85, 2331 (1986). The vOH=5 HO2H photodissociation results of N. F. Scherer, F. E. Doary, A. H. Zewail and J. W. Perry, ibid. 84, 1932 (1986) are also of interest in this connection.ADSCrossRefGoogle Scholar
  16. 16.
    P.J. Rogers, J. I. Selco and F. S. Rowland, Chem Phys. Lett. 97, 313 (1983); P.J. Rogers, D.C. Montague, J.P. Frank, S.C. Tyler and R.S. Rowland, ibid. 89,9 (1982).ADSCrossRefGoogle Scholar
  17. 17.
    S.P. Wrigley and B.S. Rabinovitch, Chem. Phys. Lett. 98, 363 (1983); S.P. Wrigley, D.A. Oswald and B.S. Rabinovitch, ibid. 104, 52 (1984).ADSCrossRefGoogle Scholar
  18. 18.
    K. N. Swamy and W.L. Hase, J.Chem.Phys. 82, 123 (1985).ADSCrossRefGoogle Scholar
  19. 19.
    V. Lopez and R.A Marcus, Chem.Phys. Lett. 93, 2132 (1982); S. M. Lederman, V. Lopez, G.A. Voth and R. A. Marcus, ibid. 124, 93 (1986); T. Uzer and J.T. Hynes, J. Phys.Chem. 90, 3524 (1986); C. Sloane and W.L. Hase, J. Chem. Phys. 66, 1523 (1977).CrossRefGoogle Scholar

Copyright information

© D. Reidel Publishing Company 1987

Authors and Affiliations

  • T. Uzer
    • 1
  • James T. Hynes
    • 2
  1. 1.School of PhysicsGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Department of Chemistry and BiochemistryUniversity of ColoradoBoulderUSA

Personalised recommendations