Correlation Properties of Sparse Real Symmetric Random Matrix

Part of the NATO ASI Series book series (ASIC, volume 200)


Sparse real symmetric random matrices are studied because they model quantum mechanics problems like coupled oscillators. By numerical calculations we determine the correlation properties of sets of eigenvalues like Nearest Neighbor Distribution, NND and spectral rigidity. We deal with the transition from Poisson statistics to Gaussian Orthogonal Ensemble (GOE) statistics as a function normalized “size” of off diagonal matrix elements. The NND are fitted with one parameter, Brody like, distributions. The transitions of NND from Poisson to Wigner is governed by the normalized mean of absolute value of off diagonal matrix elements. The long range correlation properties are examined through the Fourier transform of the stick spectrum of eigenvalues. Statistical analysis of eigenvectors shows that, for intermediate coupling, i.e. between Poisson and GOE, each eigenvector is a superposition of Lo equally weighted (statistically) basis vectors. Lo is given by a dimensionless Fermi golden rule.


Diagonal Element Random Matrix Coupling Parameter Correlation Property Couple Oscillator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1-.
    T. A. Brody, J. Floras, J.B. French, P.A. Mello, A. Pandey and S.S. Wong, Rev. Mod. Phys. 53, 385 (1981) and references cited within.ADSCrossRefGoogle Scholar
  2. O. Bohigas and M. Gianoni, “Workshop on Mathematical and computational methods in Nuclear Physics” Lecture Notes in Physics 209 (1984) Springer Verlag.Google Scholar
  3. 2-.
    E. Haller, H. Köppel, L.S. Cederbaum, Phys. Rev. Lett. 52, n° 19 1665–68 (1984)CrossRefGoogle Scholar
  4. 3-.
    T.H. Seligman, J.J.M. Verbaarschot, M.R. Zirnbauer, Phys. Rev. Letters 53 n° 3 215–217 (1984)ADSCrossRefGoogle Scholar
  5. 4-.
    D. Delande and J.C. Gay, Phys. Rev. Letters (accepted paper)Google Scholar
  6. 5-.
    R.B. Wattson and L.S. Rothman, J. of Mol. Spectros. 119 83–100 (1986)ADSCrossRefGoogle Scholar
  7. 6-.
    R. Jost, to be publishedGoogle Scholar
  8. 7-.
    M.V. Berry and M. Robnik, J. Phys. A: Math. Gen. 17 2413 (1984)MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. 8-.
    J. Verbaarshot, H.A. Weindenmuller and M. Zirnbauer, Ann. of Phys. 158, 78 (1984).ADSCrossRefGoogle Scholar
  10. 9-.
    L. Leviandier, M. Lombardi, R. Jost, J. P. Pique, Phys. Rev. Lett. 56, n° 23 2449–52 (1986) See also R. Jost and M. Lombardi, “Survey of correlation properties of polyatomic molecules vibrational energy levels using FT analysis” Proceedings of the Second International conference on quantum chaos Cuernavaca, Ed. T.H. Seligman (Springer Verlag) 1986.CrossRefGoogle Scholar
  11. 10-.
    J.M. Delory and C. Tric, Chem. Phys. 3, 54–69 (1974)CrossRefGoogle Scholar

Copyright information

© D. Reidel Publishing Company 1987

Authors and Affiliations

  • R. Jost
    • 1
  1. 1.Service National des Champs Intenses CNRSGrenoble CedexFrance

Personalised recommendations