Spectral Fluctuations: from Atomic Nuclei to Molecules

  • O. Bohigas
Part of the NATO ASI Series book series (ASIC, volume 200)


The existence of universality classes of spectral fluctuation patterns is by now well established. For classically chaotic quantum systems the fluctuations are those of eigenvalues of random matrices. There is conclusive experimental evidence in atomic nuclei. The hydrogen atom in a strong magnetic field deserves special mention. The search of these fluctuation properties in molecular spectra is a challenging problem


Atomic Nucleus Strong Magnetic Field Chaotic Motion Compound Nucleus Random Matrix Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramson E, Field R W, Imre D, Innes K K and Kinsey J L 1984 J. Chem. Phys. 80, 2298ADSCrossRefGoogle Scholar
  2. Berry M V and Tabor M 1977 Proc. Roy. Soc. Lond. A356, 375ADSzbMATHCrossRefGoogle Scholar
  3. Berry M V and Robnik M 1984 J. Phys. A17, 2413MathSciNetADSzbMATHGoogle Scholar
  4. Berry M V 1985 Proc. Roy. Soc. Lond. A400, 229ADSzbMATHCrossRefGoogle Scholar
  5. Bohigas O, Haq R U, Pandey A 1983 in Nuclear Data for Science and Technology, Böckhoff K H (ed.), Reidel, DordrechtGoogle Scholar
  6. Bohigas O and Giannoni M J 1984 in Mathematical and Computational Methods in Nuclear Physics, Dehesa J S et al (eds.), Lecture Notes in Physics 209, Springer VerlagGoogle Scholar
  7. Bohigas O, Giannoni M J and Schmit C 1984b Phys. Rev. Lett. 52, 1MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. Bohigas O, Giannoni M J and Schmit C 1984c J. Physique Lett. 45, L-1015CrossRefGoogle Scholar
  9. Bohigas O, Haq R U and Pandey A 1985 Phys. Rev. Lett. 54, 1645ADSCrossRefGoogle Scholar
  10. Brody T A, Flores J, French J B, Mello P A, Pandey A and Wong S S M 1981 Rev. Mod. Phys. 53, 385MathSciNetADSCrossRefGoogle Scholar
  11. Camarda H S and Georgopulos P D 1983 Phys. Rev. Lett. 50, 492ADSCrossRefGoogle Scholar
  12. Delande D and Gay J C 1986 Phys. Rev. Lett. 57, 2006ADSCrossRefGoogle Scholar
  13. Gay J C 1985 in Photophysics and Photochemistry in the Vacuum Ultraviolet,, Mc Glynn et al (eds.), ReidelGoogle Scholar
  14. Haller E, Köppel H and Lederbaum L S 1983 Chem. Phys. Lett. 101, 215ADSCrossRefGoogle Scholar
  15. Haq R U, Pandey A and Bohigas O 1982 Phys. Rev. Lett. 48, 1086ADSCrossRefGoogle Scholar
  16. Holle A, Wiebusch G, Main J, Hager B, Rottke H and Welge K H 1986 Phys. Rev. Lett. 56, 2594ADSCrossRefGoogle Scholar
  17. Leviandier L, Lombardi M, Jost R and Pique J P 1986 Phys. Rev. Lett. 56, 2449ADSCrossRefGoogle Scholar
  18. Liou H I, Hacken G, Rainwater J and Singh U N 1975 Phys. Rev. C11, 462 and references thereinCrossRefGoogle Scholar
  19. Mehta M L 1967 Random Matrices and the Statistical Theory of Energy levels, Academic PresszbMATHGoogle Scholar
  20. Mukamel S, Sue J and Pandey A 1984, Chem. Phys. Lett. 105, 134ADSCrossRefGoogle Scholar
  21. Porter C E 1965 (ed.) Statistical Theories of Spectra: Fluctuations,Academic PressGoogle Scholar
  22. Robnik M and Berry M V 1986 J. Phys. A19, 669MathSciNetADSGoogle Scholar
  23. Seligman T H, Verbaarschot J J M and Zirnbauer M R 1984 Phys. Rev. Lett. 53, 215ADSCrossRefGoogle Scholar
  24. Seligman T H and Nishioka H (eds.) 1986 Quantum Chaos and Statistical Nuclear Physics, Lecture Notes in Physics 263, Springer VerlagGoogle Scholar
  25. Wilson W M, Bilpuch E G and Mitchell G E 1975 Nucl. Phys. A245, 285 and references thereinCrossRefGoogle Scholar
  26. Wintgen D and Friedrich H 1986 preprintGoogle Scholar
  27. Wunner G, Woelk U, Zech I, Zeller G, Ertl T, Geyer F, Schweitzer W and Ruder H 1986, preprintGoogle Scholar

Copyright information

© D. Reidel Publishing Company 1987

Authors and Affiliations

  • O. Bohigas
    • 1
  1. 1.Division de Physique ThéoriqueInstitut de Physique NucléaireOrsay CédexFrance

Personalised recommendations