Advertisement

Semiclassical Quantization by Using the Method of Adiabatic Switching of the Perturbation

  • H. S. Taylor
  • T. P. Grozdanov
Chapter
  • 58 Downloads
Part of the NATO ASI Series book series (ASIC, volume 200)

Abstract

The semiclassical method based on the Einstein-Brillouin-Keller quantization of invariant phase-space tori and the hypothesis of the adiabatic invariance of classical action variables for near-integrable systems is discussed. The method is applied to calculation of energy spectra of two-dimensional coupled oscillator systems. Results of calculations for both, non-resonant and Fermi-resonant systems are in good agreement with quantum-mechanical predictions even when the corresponding classical dynamics is characterized by mild chaos. The general limitations of the method are discussed.

Keywords

Final Energy Resonance Zone Adiabatic Invariance Semiclassical Quantization Semiclassical Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    For a review of standard semiclassical methods for calculating energy spectra, see, for examplesGoogle Scholar
  2. 1a.
    I.C. Percival, Adv. Chem. Phys. 36, 1 (1977);CrossRefGoogle Scholar
  3. 1b.
    D.W. Noid, M.L. Koszykowski and R.A. Marcus, Ann. Rev. Phys. Chem. 32, 267 (1981). For recently proposed methods seeADSCrossRefGoogle Scholar
  4. 1c.
    N. DeLeon and E.J. Heller, J. Chem. Phys. 78, 4005 (1983); J. Chem. Phys. 81, 5957 (1984)MathSciNetADSCrossRefGoogle Scholar
  5. 1d.
    W.H. Miller, J. Chem. Phys. 81, 3573 (1984)ADSCrossRefGoogle Scholar
  6. 1e.
    C.W. Eaker, G.C. Schatz, N. DeLeon and E.J. Heller, J. Chem. Phys. 81, 5913 (1984)ADSCrossRefGoogle Scholar
  7. 1f.
    C.C. Martens and G.S. Ezra, J. Chem. Phys. 83, 2990 (1985).ADSCrossRefGoogle Scholar
  8. 2.
    A. Einstein, Verh. Dtsch. Phys. Ges. (Berlin) 19, 82 (1917); L. Brillouin, J. Phys. Radium 7, 353 (1926); J.B. Keller, Ann. Phys. (New York) 4, 180 (1958); Also see ref. 1 (a).Google Scholar
  9. 3.
    E.A. Solov’ev, Sov. Phys. JETP 48, 635 (1978).ADSGoogle Scholar
  10. 4.
    T.P. Grozdanov and E.A. Solov’ev, J. Phys. B 15, 1195 (1982).ADSGoogle Scholar
  11. 5.
    M.V. Berry, J. Phys. A.: Math. Gen. 17, 1225 (1984).ADSCrossRefGoogle Scholar
  12. 6.
    R.T. Skodje, F. Borondo and W.P. Reinhardt, J. Chem. Phys. 82, 4611 (1985).ADSCrossRefGoogle Scholar
  13. 7.
    B.R. Johnson, J. Chem. Phys. 83, 1204 (1985).ADSCrossRefGoogle Scholar
  14. 8.
    C.W. Patterson, J. Chem. Phys. 83, 4618 (1985).ADSCrossRefGoogle Scholar
  15. 9.
    T.P. Grozdanov, S. Saini and H.S. Taylor, Phys. Rev. A 33, 55 (1986).ADSCrossRefGoogle Scholar
  16. 10.
    T.P. Grozdanov, S. Saini and H.S. Taylor, J. Chem. Phys. 84, 3243 (1986).ADSCrossRefGoogle Scholar
  17. 11.
    L.D. Landau and E.M. Lifshitz, Mechanics, 3rd ed. ( Pergamon, Oxford, 1976 ).Google Scholar
  18. 12.
    V.I. Arnold, Mathematical Methods of Classical Mechanics, ( Springer-Verlag, New York, 1978).zbMATHGoogle Scholar
  19. 13a.
    B.V. Chirikov, Phys. Rep. 52, 265 (1979)MathSciNetADSCrossRefGoogle Scholar
  20. 13b.
    A.J. Lichtenberg and M.A. Lieberman, Regular and Stochastic Motion, (Springer-Verlag, New York, 1983)zbMATHGoogle Scholar
  21. 14.
    R.B. Shirts and W.P. Reinhardt, J. Chem. Phys. 77, 5204 (1982).MathSciNetADSCrossRefGoogle Scholar
  22. 15.
    D.W. Noid - cited in ref. 16.Google Scholar
  23. 16.
    R.T. Swimm and J.B. Delos, J. Chem. Phys. 71, 1706 (1979).MathSciNetADSCrossRefGoogle Scholar
  24. 17.
    E. Fermi, Z. Phys. 71, 250 (1931)•ADSCrossRefGoogle Scholar
  25. 18.
    J.A. Sanders, J. Chem. Phys. 74, 5733 (1981).MathSciNetADSCrossRefGoogle Scholar
  26. 19.
    T. Uzer and R.A. Marcus, J. Chem. Phys. 81, 5013 (1984).MathSciNetADSCrossRefGoogle Scholar
  27. 20.
    D.W. Noid, M.L. Koszykowski and R.A. Marcus, J. Chem. Phys. 71, 2864 (1979).MathSciNetADSCrossRefGoogle Scholar
  28. 21.
    T.P. Grozdanov, S. Saini and H.S. Taylor, J. Phys. A 19, 691 (1986).MathSciNetADSzbMATHCrossRefGoogle Scholar
  29. 22.
    C.W. Eaker and G.C. Schatz, J. Chem. Phys. 81, 2394 (1984).ADSCrossRefGoogle Scholar

Copyright information

© D. Reidel Publishing Company 1987

Authors and Affiliations

  • H. S. Taylor
    • 1
  • T. P. Grozdanov
    • 1
  1. 1.Department of ChemistryUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations