Advertisement

Semiclassical Dynamics in Phase Space; Time-Dependent Self-Consistent Field Approximation

  • Shaul Mukamel
  • Yi Jing Yan
  • Jonathan Grad
Chapter
Part of the NATO ASI Series book series (ASIC, volume 200)

Abstract

Gaussian wavepackets in phase space, which are constructed to have the exact first and second moments with respect to the coordinates and momenta, are used to develop self-consistent equations of motion for the semiclassical time evolution of interacting anharmonic systems. The equations apply to pure as well as to mixed states and may, therefore, be particularly useful for molecular dynamics in condensed phases. Numerical calculations of Raman excitation profiles, using a Morse oscillator, demonstrate the accuracy of the present equations.

Keywords

Phase Space Density Matrix Pure State Nonequilibrium Statistical Mechanic Present Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. J. Heller, J. Chem. Phys. 62, 1544 (1975); Acct. Chem. Res. 14, 368 (1981).ADSCrossRefGoogle Scholar
  2. 2.
    R. D. Coalson and M. Karplus, Chem. Phys. Lett. 90, 301 (1982).ADSCrossRefGoogle Scholar
  3. 3.
    R. F. Grote and A. E. DePristo, Surface Science 131, 491 (1983); D. C. Clary and A. E. DePristo, J. Chem. Phys. 81, 5167 (1984).ADSCrossRefGoogle Scholar
  4. 4.
    R. T. Skodje and D. G. Truhlar, J. Chem. Phys. 80, 3123 (1984).ADSCrossRefGoogle Scholar
  5. 5.
    D. Thirumalai, E. J. Bruskin, and B. J. Berne, J. Chem. Phys. 83 230 (1985).ADSCrossRefGoogle Scholar
  6. 6.
    R. Heather and H. Metiu, Chem. Phys. Lett. 118, 558 (1985); S. Swada, R. Heather, B. Jackson, and H. Metiu, J. Chem. Phys. 83, 3009 (1985).Google Scholar
  7. 7.
    S. Mukamel, J. Phys. Chem. 88, 3185 (1984).CrossRefGoogle Scholar
  8. 8.
    J. Grad, Y. Yan, and S. Mukamel, Chem. Phys. Lett. (submitted); J. Chem. Phys. (submitted).Google Scholar
  9. 9.
    S. Mukamel, Phys. Rep. 93, 1 (1982).ADSCrossRefGoogle Scholar
  10. 10.
    R. Zwanzig, Supp. Prog. Theo. Phys. 64, 74 (1978).ADSCrossRefGoogle Scholar
  11. 11.
    R. B. Gerber, V. Buch, and M. Ratner, J. Chem. Phys. 77, 3022 (1982); V. Buch, R. B. Gerber, and M. A. Ratner, Chem. Phys. Lett. 101, 44 (1983); G. C. Schatz, V. Buch, M. A. Ratner, and R. B. Gerber J. Chem. Phys. 79, 1808 (1983).Google Scholar
  12. 12.
    R. Kosloff and C. Cerjan, J. Chem. Phys. 81, 3722 (1984).ADSCrossRefGoogle Scholar
  13. 13.
    L. Onsager and S. Machlup, Phys. Rev. 91, 1505 (1953).MathSciNetADSzbMATHCrossRefGoogle Scholar
  14. 14.
    B. Robertson, Phys. Rev. 144, 151 (1966); 160, 175 (1967).MathSciNetADSCrossRefGoogle Scholar

Copyright information

© D. Reidel Publishing Company 1987

Authors and Affiliations

  • Shaul Mukamel
    • 1
  • Yi Jing Yan
    • 1
  • Jonathan Grad
    • 1
  1. 1.Department of ChemistryUniversity of RochesterRochesterUSA

Personalised recommendations