Exponential Approximation

  • Richard E. Bellman
  • Robert S. Roth
Part of the Mathematics and Its Applications book series (MAIA, volume 26)


A problem common to many fields is that of determining the parameters
$${\rm{u(t) = }}\mathop \sum \limits_{{\rm{n = 1}}}^{\rm{N}} {\rm{ }}{{\rm{a}}_{\rm{n}}}{\rm{ e }}\mathop {{\rm{n,}}}\limits^{{\rm{\lambda t}}} {\rm{ }}$$
where u(t) is known.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography and Comments

  1. Bellman, R.:1970, “Topics in Pharmacokinetics I: Concentration Dependant Rates”, Math. Biosci., 6,1, 13–17Google Scholar
  2. Bellman, R.:1971, “Topics in Pharmacokinetics II: Identification of Time Lag Processes”, Math. Biosci, 11, 337–342Google Scholar
  3. Bellman, R.:1971 “Topics in Pharmacokinetics III: Repeated Dosage and Impulse Control”, Math. Biosci., 12, 1–5Google Scholar
  4. Bellman, R.:1972, “Topics in Pharmacokinetics IV: Approximation in Process Space and Fitting by Sums of Exponentials”, Math. Biosci., 14,3/4, 45–47Google Scholar

Copyright information

© D Reidel Publishing Company 1986

Authors and Affiliations

  • Richard E. Bellman
    • 1
    • 2
  • Robert S. Roth
    • 3
  1. 1.Department of Electrical EngineeringUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Center for Applied MathematicsThe University of GeorgiaAthensUSA
  3. 3.BostonUSA

Personalised recommendations