Feedback Linearization and Simultaneous Output Block Decoupling of Nonlinear Systems

  • T. J. Tarn
  • Daizhan Cheng
  • Alberto Isidori
Part of the Mathematics and Its Applications book series (MAIA, volume 29)


This paper presents an algorithm for feedback linearization and simultaneous output block decoupling of nonlinear systems. Under the assumption that the largest controllability distributions contained in \( {K_i} = \mathop \cap \limits_{j \ne i}^k \ker (d{h^j}),\;i = 1...,k \) are linearly independent, for a nonlinear system to be feedback linearized and output block decoupled it is necessary and sufficient that the algorithm is executable. This algorithm, is novel in the sense that there are no constraints on the number of inputs and the number of outputs of a system.


Nonlinear System Feedback Linearization Invariant Distribution Linear Controllable System Output Block 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Meyer, R. Su and L. R. Hunt, “Application of Nonlinear Transformations to Automatic Flight Control”, Automatica, Vol. 20, No. 1, pp. 103–107, 1984.CrossRefGoogle Scholar
  2. 2.
    G. Meyer, L. R. Hunt and R. Su, “Design of a Helicopter Autopilot by Means of Linearizing Transformations”, Guidance and Control Panel 35th Symposium, Lisbon, Portugal (AGARD Conference Proceedings No. 321) 1983.Google Scholar
  3. 3.
    T. J. Tarn, A. K. Bejczy, A. Isidori and Y. Chen, “Nonlinear Feedback in Robot Arm Control”, Proceedings of the 23rd IEEE Conference on Decision and Control, Las Vegas, Nevada, December 12–14, 1984.Google Scholar
  4. 4.
    A. K. Bejczy, T. J. Tarn and Y. L. Chen, “Robot Arm Dynamic Control by Computer”, 1985 IEEE International Conference on Robotics and Automation, St. Louis, Missouri, March 25–28, 1985.Google Scholar
  5. 5.
    Y. Chen, Nonlinear Feedback and Computer Control of Robot Arms. D.Sc. Dissertation, Washington University, St. Louis, Missouri, December 1984.Google Scholar
  6. 6.
    A. J. Krener, “A Decomposition Theory for Differentiable Systems”, SIAM J. Contr. Optim. 15(5), 813–829 (1977).MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    S. H. Mikhail and W. H. Wonham, “Local Decomposability and the Disturbance Decoupling Problem in Nonlinear Autonomous Systems”, Proceedings of the 16th Allerton Conf. Commun. Contr. Comput., 664–669, Oct. 1978.Google Scholar
  8. 8.
    A. Isidori, A. J. Krener, C. Gori-Giorgi, and S. Monaco, “Nonlinear Decoupling via Feedback: A Differential Geometric Approach”, IEEE Transactions on Automatic Control AC-26(2), (1981).Google Scholar
  9. 9.
    G. Basile and G. Marro, “Controlled and Conditioned Invariant Subspaces in Linear System Theory”, J. Optimiz. Theory Appl. 3(5), 306–315 (1969).MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    W. M. Wonham and A. S. Morse, “Feedback Invariants of Linear Multivariable Systems”, Automatica 8, 93–100 (1972).MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    W. Respondek, “On Decomposition of Nonlinear Control Systems”, Systems and Control Letters 1, 301–308 (1982).MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    W. M. Wonham, Linear Multivariable Control. A Geometric Approach, 2nd ed., Applic. of Math 10, Springer-Verlag, Berlin, 1979.zbMATHGoogle Scholar
  13. 13.
    P. Brunovsky, “A Classification of Linear Controllable Systems”, Kibernetica (Praha) 6, 173–188 (1970).MathSciNetzbMATHGoogle Scholar
  14. 14.
    R. W. Brockett, “Feedback Invariants for Nonlinear Systems”, IFAC Congress, Helsinki, 1978.Google Scholar
  15. 15.
    B. Jaklubczyk and W. Respondek, “On Linearization of Control Systems”, Bull. Acad. Pol. Sci., Ser. Sci. Math. Astronom. Phys. 28 (1980).Google Scholar
  16. 16.
    R. Su, “On the Linear Equivalence of Nonlinear Systems”, Systems and Control Letters 2(1) (1982).Google Scholar
  17. 17.
    L. R. Hunt, R. Su, and G. Meyer, “Design for Multi-Input Nonlinear Systems”, Differential Geometric Control Theory, Proceedings of the Conference held at MTU, 268–298, June 28-July 2, 1982. (Published by Birkhauser).Google Scholar
  18. 18.
    A. Isidori, Nonlinear Control Systems: An Introduction. Springer-Verlag, Berlin, 1985.zbMATHCrossRefGoogle Scholar
  19. 19.
    D. Cheng, T. J. Tarn and A. Isidori, “Global Feedback Linearization of Nonlinear Systems”, Proceedings of 23rd Conference on Decision and Control, Las Vegas, Neveda, December 1984.Google Scholar

Copyright information

© D. Reidel Publishing Company 1986

Authors and Affiliations

  • T. J. Tarn
    • 1
  • Daizhan Cheng
    • 2
  • Alberto Isidori
    • 3
  1. 1.Department of Systems Science and MathemticsWashington UniversitySt. LouisUSA
  2. 2.Institute of Systems ScienceAcademia SinicaBeijingChina
  3. 3.Dipartmento di Informatics and SistemisticaUniverdita di Roma ‘La Sapienza’RomaItaly

Personalised recommendations