About the Local Linearization of Nonlinear Systems

  • C. Reboulet
  • P. Mouyon
  • C. Champetier
Part of the Mathematics and Its Applications book series (MAIA, volume 29)


While in a recent past input/output linearization ([2], [33]) and global linearization ([7], [8], [11]) of differentiable nonlinear systems have received a considerable attention, some new ideas concerning the local linearization have emerged. In all cases, the procedure consists in defining control specifications on the linearized system independently of the operating point. Then, the local linear control laws are parametrized by the operating point and analytically “integrated” in a global nonlinear design (that is, without gain scheduling).


Nonlinear System Operating Point State Feedback Local Linearization Controllable Nonlinear System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    BAUMANN W., RUGH W. ‘Feedback Control of Nonlinear Systems by Extended Linearization: the multi-input case’, preprint.Google Scholar
  2. [2]
    CLAUDE D. ‘Linéarisation par difféomorphisme et immersion des systèmes’ in Analysis and Optimization of Systems, Lectures Notes in Control and Information Sciences, Springer-Verlag, 63, 1984, pp339–351.CrossRefGoogle Scholar
  3. [3]
    CLAUDE D., FLIESS M., ISIDORI A. ‘Immersion directe et par bouclage d’un système non linéaire dans un linéaire’, C.R. Acad. Sc. Paris, 296, série I, 1983, pp237–240.MathSciNetzbMATHGoogle Scholar
  4. [4]
    CHAMPETIER C., MOUYON P. ‘About the local linearization of nonlinear systems’, 24th IEEE CDC, Fort Lauderdale, 1985.Google Scholar
  5. [5]
    CHAMPETIER C., MOUYON P., MAGNI J.-F. ‘Pseudolinearization of nonlinear systems by dynamic precompensation’, 24th IEEE CDC, Fort Lauderdale, 1985.Google Scholar
  6. [6]
    CHAMPETIER C., MOUYON P., REBOULET C. ‘Pseudolinearization of multi-input nonlinear systems’, Proceedings of the 23rd IEEE CDC, Las Vegas, 1984Google Scholar
  7. [7]
    HUNT L., SU R., MEYER G. ‘Global transformations of nonlinear systems’, IEEE Trans. Aut. Control, 28, 1983, pp24–31.MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    JAKUBCYZK B., RESPONOEK W. ‘On linearization of control systems’, Bull. Acad. Polon. Sci., Ser. Sci. Math. Astronom. Phys., 28, 1980, pp 517–522Google Scholar
  9. [9]
    KRENER A.J. ‘Approximate linearization by state feedback and coordinate change’, Systems Control Letters, 5, 1984, pp181–185.MathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    MOUYON P., CHAMPETIER C., REBOULET C. ‘Application d’une nouvelle méthode de commande des systèmes non linéaires -la pseudolinéarisation- à un exemple industriel’, Congrès INRIA, Nice 1984.Google Scholar
  11. [11]
    NIJMEIJER H. ‘State space equivalence of an affine nonlinear system with outputs to a minimal linear system’, Int. J. Control, 39, 1984, pp919–922.MathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    RUGH W. ‘Design of nonlinear compensators for nonlinear systems by extended linearization technique’, Proceedings of the 23rd IEEE CDC, Las Vegas, 1984Google Scholar
  13. [13]
    RUGH W. ‘An extended linearization approach to nonlinear system inversion’, this book.Google Scholar

Copyright information

© D. Reidel Publishing Company 1986

Authors and Affiliations

  • C. Reboulet
    • 1
  • P. Mouyon
    • 1
  • C. Champetier
    • 1
  1. 1.C.E.R.T. / D.E.R.A.Toulouse CedexFrance

Personalised recommendations