Geometry of the Optimal Control

  • I. A. K. Kupka
Part of the Mathematics and Its Applications book series (MAIA, volume 29)


The purpose of this paper is to give a short and somewhat incomplete survey of the optimal control problems particularly of its geometric aspects.


Maximum Principle Optimal Control Problem Convex Body Optimal Trajectory Simple Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [B]
    B. BONNARD, ‘On singular externals in the time minimal problem’. Proceedings MNTS 1985.Google Scholar
  2. [C]
    C. CARATHEODORY, ‘Calculus of variations and partial differential equations of the 1st order’. Holden Day 1965, vol.1 and II.Google Scholar
  3. [E]
    I. EKELAND, ‘Discontinuité des champs... variations’. Publ. Math. I.H.E.S. vol.47 (1977), pp. 5–32.MathSciNetzbMATHGoogle Scholar
  4. [G, W, P, L]
    C.G. GIBSON — K. WIRTHMÜLLER — A.A. DU PLESSIS — E.J.N. LOOIJENGA, ‘Topological stability of smooth mappings’. Springer LNN 552 (1976).zbMATHCrossRefGoogle Scholar
  5. [H, P, S]
    M.W. HIRSCH — C.C. PUGH — M. SHUB, ‘Invariant manifolds’. Springer LNM 583 (1977).zbMATHGoogle Scholar
  6. [K1]
    F. KLOK, ‘Broken solutions of homogeneous variational problems’. Jour. Diff. Equat. vol.55 (1984), pp. 101–134.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [Ku1]
    I.A.K. KUPKA, ‘Geometric theory of extremals in optimal control’, to appear in Trans. Amer. Math. Soc.Google Scholar
  8. [Ku2]
    I.A.K. KUPKA, ‘Generic properties of extremals in optimal control problems’ in ‘Differential geometric control theory’. Birkhäuser PM27 (1983), pp. 310–315.Google Scholar
  9. [M]
    M. MORSE, ‘Global variationnal analysis’. Mathematical Notes Princeton U. Press 1976.Google Scholar
  10. [S]
    H. SUSSMANN, ‘Lie brackets... control’ in ‘Differential geometric control theory’. Birkhäuser PM27 (1983).Google Scholar

Copyright information

© D. Reidel Publishing Company 1986

Authors and Affiliations

  • I. A. K. Kupka
    • 1
  1. 1.Laboratoire de MathématiquesInstitut FourierFrance

Personalised recommendations