Advertisement

Local Input-Output Decoupling of Discrete Time Nonlinear Systems

  • J. W. Grizzle
Chapter
Part of the Mathematics and Its Applications book series (MAIA, volume 29)

Abstract

A local treatment of the (restricted) block input-output decoupling problem is given. The major tools employed are the invariant and locally controlled invariant distributions which have recently been extended to the discrete time domain.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W. M. Wonham, Linear Multivariable Control: A Geometric Approach, 2nd ed., Springer-Verlag, New York, Applications of Mathematics, 1979.zbMATHGoogle Scholar
  2. [2]
    A. S. Morse and W. M. Wonham, ‘Status of Non-interacting Control,’ IEEE Trans, on Automatic Control, Vol. AC-16, 1971, pp. 568–581.MathSciNetCrossRefGoogle Scholar
  3. [3]
    P. K. Sinha, ‘State Feedback Decoupling of Nonlinear Systems,’ IEEE Trans, on Automatic Control, Vol. AC-22, 1977, pp. 487–48–9.CrossRefGoogle Scholar
  4. [4]
    D. Claude, ‘Découplage des systèmes non linéaires, séries génératrice non commutative et algébres de Lie,’ SIAM J. of Control, to appear.Google Scholar
  5. [5]
    A. Isidori, A. J. Krener, C. Gori-Giorgio, and S. Monaco, ‘Nonlinear Decoupling via Feedback: A Differential Geometric Approach,’ IEEE Trans, on Automatic Control, Vol. AC-26, No. 2, April 1981, pp. 331–345.CrossRefGoogle Scholar
  6. [6]
    N. Nijmeijer and J. M. Schumacher, ‘The Noninteracting Control Problem for Nonlinear Control Systems,’ Memo 427, Dept. Appl. Math., Twente University of Technology, May 1983.Google Scholar
  7. [7]
    A. J. van der Schaft, ‘Linearization and Input-Output Decoupling for General Nonlinear Systems,’ Systems and Control Letters, Vol. 5, 1985. pp. 27–33.Google Scholar
  8. [8]
    J. W. Grizzle, ‘Controlled Invariance for Discrete Time Nonlinear Systems with an Application to the Disturbance Decoupling Problem,’ IEEE Trans, on Automatic Control, to appear.Google Scholar
  9. [9]
    J. W. Grizzle, ‘Distributions invariantes commandées pour les systèmes non linéaires en temps discret,’ Comptes Rendus de L’Acad Emie des Sciences, Paris, t. 300, Serie I, No. 13, 1985, pp. 447–450.Google Scholar
  10. [10]
    S. Monaco and D. Normand-Cyrot, ‘Sur la commande non interactive des systèmes non linéaires en temps discret,’ in Lecture Notes in Control and Information Science, Springer-Verlag, Vol. 63, edited by A. Bensoussan and J. L. Lions, Nice, June 19–22, 1984, pp. 364–377.Google Scholar
  11. [11]
    S. Monaco and D. Normand-Cyrot, ‘Invariant Distributions for Discrete-Time Nonlinear Systems,’ Systems and Control Letters, Vol. 5, No. 3, pp. 191–196.Google Scholar
  12. [12]
    J. W. Grizzle, ‘Decoupling of Discrete Time Nonlinear Systems,’ to appear in Int. J. of Control.Google Scholar
  13. [13]
    W. Respondek, ‘On Decomposition of Nonlinear Control Systems,’ Systems and Control Letters, Vol. 1, 1982, pp. 301–308.MathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
    J. W. Grizzle and H. Nijmeijer, ‘Zeros at Infinity for Nonlinear Discrete Time Systems,’ to appear in Int. J. of Math. Syst. Thy.Google Scholar

Copyright information

© D. Reidel Publishing Company 1986

Authors and Affiliations

  • J. W. Grizzle
    • 1
  1. 1.Department of Electrical and Computer EngineeringUniversity of IllinoisUrbanaUSA

Personalised recommendations