Orbit Theorems and Sampling

  • Eduardo D. Sontag
Part of the Mathematics and Its Applications book series (MAIA, volume 29)


This paper proposes a notion of smooth action on a manifold, and establishes a general integrability result for certain associated distributions. As corollaries, various classical and new results on manifold structures of orbits are established, and the main theorem on preservation of transitivity under sampling is shown to be a simple consequence.


Vector Field Continuous Time Full Rank Under Sampling Integral Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BA]
    Baillieul, J., “Controllability and observability of polynomial dynamical systems,” Nonl.Anal., TMA 5(1981):543–552.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [BL]
    Bar-Ness, Y. and G. Langholz, “Preservation of controllability under sampling,” Int.J.Control 22(1975):39–47.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [BO]
    Bonnard, B., “Controle de l’attitude d’un satellite,” Report #8019, Univ.Bordeaux, Oct. 1980.Google Scholar
  4. [BC]
    Brickell, F. and R.S. Clark, Differentiable Manifolds, Van Nostrand, New York, 1970.zbMATHGoogle Scholar
  5. [FN]
    Fliess, M. and D. Normand-Cyrot, “A group-theoretic approach to discrete-time nonlinear controllability,” Proc.IEEE Conf.Dec. Control, 1981.Google Scholar
  6. [GH]
    Gibson, J.A. and T.T. Ha, “Further to the preservation of controllability under sampling,” Int.J.Control 31(1980):1013–1026.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [GO]
    Goodman, R., “Lifting vector fields to nilpotent Lie groups,” J.Math. Pures et Appl. 57(1978): 77–86.zbMATHGoogle Scholar
  8. [HK]
    Hermann, R. and A.J. Krener, “Nonlinear controllability and observability,” IEEE Trans.Autom.Ctr. 22:728–740.Google Scholar
  9. [IS]
    Isidori, A., Nonlinear Control Systems: An Introduction, Springer, Berlin, 1985.zbMATHCrossRefGoogle Scholar
  10. [JA]
    Jackubczyk, B., “Invertible realizations of nonlinear discrete time systems,” Proc.Princeton Conf.Inf.Sc.and Syts. (1980):235–239.Google Scholar
  11. [JN]
    Jackubczyk, B., and D. Normand-Cyrot, “Orbites de pseudo-groupes de diffeomorphismes et commandabilité des systemes non linearires en temps discret,” C.R.Acad. Sc. Paris, 298-I(1984): 257–260.Google Scholar
  12. [JC]
    Jacobson, N., Lie Algebras, Dover, N.Y., 1979.Google Scholar
  13. [KHN]
    Kalman, R.E., Y.C. Ho, and K.S. Narendra, “Controllability of linear dynamical systems,” Contr.Diff.Eqs. 1(1963):189–213.MathSciNetGoogle Scholar
  14. [KL]
    Kalouptsidis, N., Accessibility and Stability Theory of Nonlinear Control Systems, Dr.Sci. Thesis, Washington University, 1977.Google Scholar
  15. [KS]
    Kupka, L, and G. Sallet, “A sufficient condition for the transitivity of pseudo-groups: Application to system theory,” J. Diff. Eqs. 47(1973): 462–470.MathSciNetCrossRefGoogle Scholar
  16. [KR]
    Krener, A., “(Adf,g), (adf,g) and locally (adf,g) Invariant and Controllability Distributions,” preprint, UC-Davis, 1984.Google Scholar
  17. [LO]
    Lobry, C., “Bases mathematiques de la theorie de systemes asservis non lineaires,” Report #7505, Univ.Bordeaux, 1976.Google Scholar
  18. [MO]
    Mohler, R.M., Bilinear Control Processes, Academic Press, NY, 1973zbMATHGoogle Scholar
  19. [NC]
    Normand-Cyrot, Dorothee, Theorie et Pratique des Systemes Non Lineaires en Temps Discret, These de Docteur d’Etat, Univ. Paris-Sud, March 1983.Google Scholar
  20. [ST]
    Stefan, P., “Attainable sets are manifolds,” preprint, Univ. of Wales, 1973(?).Google Scholar
  21. [SO]
    Sontag, E.D., Polynomial Response Maps, Springer, Berlin-NY, 1979.zbMATHCrossRefGoogle Scholar
  22. [SO1]
    Sontag, E.D., “Remarks on the preservation of various controllability properties under sampling,” in Developpement et Utilisation d’Outils et Modèles Mathématiques en Automatique, Analyse de Systèmes et Traitement de Signal, Coll. CNRS, RCP 567, Belle-Ile, 1983, pp.623–637.Google Scholar
  23. [SO2]
    Sontag, E.D., “A concept of local observability,” Systems and Control Letters 5(1984): 41–47.MathSciNetzbMATHCrossRefGoogle Scholar
  24. [SO3]
    Sontag, E.D., “An eigenvalue condition for sampled weak controllability of bilinear systems,” to appear.Google Scholar
  25. [SS]
    Sontag, E.D. and H.J. Sussmann, “Accessibility under sampling,” Proc. IEEE Conf. Dec. and Control, Orlando, Dec. 1982. Google Scholar
  26. [SU1]
    Sussmann, H.J., “Orbits of families of vector fields and integrability of distributions,” Trans.AMS 180(1973):171–188.MathSciNetzbMATHCrossRefGoogle Scholar
  27. [SU2]
    Sussmann, H.J., “Lie brackets, real analiticity, and geometric control,” in Differential Geometric Control theory (R.W. Brockett, R.S. Millman, and H.J. Sussmann, eds.), Birkhauser, Boston, 1983.Google Scholar
  28. [SJ]
    Sussmann, H.J. and V. Jurdjevic, “Controllability of nonlinear systems,” J.Diff.Eqs. 12(1972):95–116.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© D. Reidel Publishing Company 1986

Authors and Affiliations

  • Eduardo D. Sontag
    • 1
  1. 1.Department of MathematicsRutgers UniversityNew BrunswickUSA

Personalised recommendations